101 research outputs found

    Zebrafish promoter microarrays identify actively transcribed embryonic genes.

    Get PDF
    We have designed a zebrafish genomic microarray to identify DNA-protein interactions in the proximal promoter regions of over 11,000 zebrafish genes. Using these microarrays, together with chromatin immunoprecipitation with an antibody directed against tri-methylated lysine 4 of Histone H3, we demonstrate the feasibility of this method in zebrafish. This approach will allow investigators to determine the genomic binding locations of DNA interacting proteins during development and expedite the assembly of the genetic networks that regulate embryogenesis.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Two Distinct E3 Ubiquitin Ligases Have Complementary Functions in the Regulation of Delta and Serrate Signaling in Drosophila

    Get PDF
    Signaling by the Notch ligands Delta (Dl) and Serrate (Ser) regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib) gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila

    Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi)

    Get PDF
    BACKGROUND: RNA interference (RNAi) is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly) gene (corresponding to a putative gene CG5652/GM06434), that we named beltless based on an embryonic loss-of-function phenotype. RESULTS: Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp) beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless) of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1)RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1)RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. CONCLUSIONS: We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF) NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should elucidate the role and mechanism of action of beltless during Drosophila development and in adults, including in the adult nervous system

    Zebrafish homologs of 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Get PDF
    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ~50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.Simons Foundation (Grant Number 95091

    Candidate Genes for Expansion and Transformation of Hematopoietic Stem Cells by NUP98-HOX Fusion Genes

    Get PDF
    BACKGROUND: Hox genes are implicated in hematopoietic stem cell (HSC) regulation as well as in leukemia development through translocation with the nucleoporin gene NUP98. Interestingly, an engineered NUP98-HOXA10 (NA10) fusion can induce a several hundred-fold expansion of HSCs in vitro and NA10 and the AML-associated fusion gene NUP98-HOXD13 (ND13) have a virtually indistinguishable ability to transform myeloid progenitor cells in vitro and to induce leukemia in collaboration with MEIS1 in vivo. METHODOLOGY/PRINCIPAL FINDINGS: These findings provided a potentially powerful approach to identify key pathways mediating Hox-induced expansion and transformation of HSCs by identifying gene expression changes commonly induced by ND13 and NA10 but not by a NUP98-Hox fusion with a non-DNA binding homedomain mutation (N51S). The gene expression repertoire of purified murine bone marrow Sca-1+Lin- cells transduced with retroviral vectors encoding for these genes was established using the Affymetrix GeneChip MOE430A. Approximately seventy genes were differentially expressed in ND13 and NA10 cells that were significantly changed by both compared to the ND13(N51S) mutant. Intriguingly, several of these potential Hox target genes have been implicated in HSC expansion and self-renewal, including the tyrosine kinase receptor Flt3, the prion protein, Prnp, hepatic leukemia factor, Hlf and Jagged-2, Jag2. Consistent with these results, FLT3, HLF and JAG2 expression correlated with HOX A cluster gene expression in human leukemia samples. CONCLUSIONS: In conclusion this study has identified several novel Hox downstream target genes and provides important new leads to key regulators of the expansion and transformation of hematopoietic stem cells by Hox

    Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis

    Get PDF
    The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a “shelf-screen” to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.National Institutes of Health (U.S.) (Grant T32MH020051)National Institutes of Health (U.S.) (Grant F32NS043872

    spenito

    No full text
    corecore