430 research outputs found

    Current fed multipulse rectifier approach for unidirectional HVDC and MVDC applications

    Get PDF
    Even though multipulse rectifiers are a long established and well-known technology, still their behavior is not fully described in the literature when they are fed by three-phase balanced sinusoidal currents sources. To address the aforementioned gap, this work presents the operation and properties of current-fed multipulse rectifiers. The undertaken aim is achieved by analyzing the examined topology through circuit analysis and then, the theoretical results are validated through comparisons with the simulated waveforms and experimental results. Furthermore, the expected harmonic content and the duality with traditional voltage-fed multipulse rectifiers are presented. In the proposed structure, the transformer voltages present a multipulse waveform, instead of its primary currents as in voltage-fed multipulse rectifiers. This implies on limiting the voltage steps and its derivative which might be beneficial to reduce cost and volume of insulation, particularly for MVDC and HVDC applications. Besides that, by actively controlling the primary currents, a possible copper loss reduction is shown in the transformer windings, differentiating the proposed structure from its voltage controlled counterpart

    Motor Learning Induces Plasticity in the Resting Brain—Drumming Up a Connection

    Get PDF
    Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain structure. However, little is known about the dynamic interactions between different brain regions after extensive coordinated motor learning such as drumming. In this article, we have compared the resting-state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course of drumming (30-min drumming sessions, 3 days a week for 8 weeks) and 16 age-matched novice comparison participants. To identify brain regions showing significant FC differences before and after drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum training was associated with an increased FC between the posterior part of bilateral superior temporal gyri (pSTG) and the rest of the brain (i.e., all other voxels). These regions were then used to perform seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for rehabilitation treatments with exercise-based intervention to overcome impairments due to brain diseases are also discussed

    Quantum Mechanics and Black Holes in Four-Dimensional String Theory

    Full text link
    In previous papers we have shown how strings in a two-dimensional target space reconcile quantum mechanics with general relativity, thanks to an infinite set of conserved quantum numbers, ``W-hair'', associated with topological soliton-like states. In this paper we extend these arguments to four dimensions, by considering explicitly the case of string black holes with radial symmetry. The key infinite-dimensional W-symmetry is associated with the SU(1,1)U(1)\frac{SU(1,1)}{U(1)} coset structure of the dilaton-graviton sector that is a model-independent feature of spherically symmetric four-dimensional strings. Arguments are also given that the enormous number of string {\it discrete (topological)} states account for the maintenance of quantum coherence during the (non-thermal) stringy evaporation process, as well as quenching the large Hawking-Bekenstein entropy associated with the black hole. Defining the latter as the measure of the loss of information for an observer at infinity, who - ignoring the higher string quantum numbers - keeps track only of the classical mass,angular momentum and charge of the black hole, one recovers the familiar a quadratic dependence on the black-hole mass by simple counting arguments on the asymptotic density of string states in a linear-dilaton background.Comment: 18 page

    Canonical Quantum Supergravity in Three Dimensions, (some lines lost during submission)

    Get PDF
    We discuss the canonical treatment and quantization of matter coupled supergravity in three dimensions, with special emphasis on N=2N=2 supergravity. We then analyze the quantum constraint algebra; certain operator ordering ambiguities are found to be absent due to local supersymmetry. We show that the supersymmetry constraints can be partially solved by a functional analog of the method of characteristics. We also consider extensions of Wilson loop integrals of the type previously found in ordinary gravity, but now with connections involving the bosonic and fermionic matter fields in addition to the gravitational connection. In a separate section of this paper, the canonical treatment and quantization of non-linear coset space sigma models are discussed in a self contained way.Comment: 40 pages, LaTeX, DESY 93-07

    Drum training induces long-term plasticity in the cerebellum and connected cortical thickness

    Get PDF
    It is unclear to what extent cerebellar networks show long-term plasticity and accompanied changes in cortical structures. Using drumming as a demanding multimodal motor training, we compared cerebellar lobular volume and white matter microstructure, as well as cortical thickness of 15 healthy non-musicians before and after learning to drum, and 16 age matched novice control participants. After 8 weeks of group drumming instruction, 3 ×30 minutes per week, we observed the cerebellum significantly changing its grey (volume increase of left VIIIa, relative decrease of VIIIb and vermis Crus I volume) and white matter microstructure in the inferior cerebellar peduncle. These plastic cerebellar changes were complemented by changes in cortical thickness (increase in left paracentral, right precuneus and right but not left superior frontal thickness), suggesting an interplay of cerebellar learning with cortical structures enabled through cerebellar pathways

    Management learning at the speed of life:Designing reflective, creative, and collaborative spaces for millenials

    Get PDF
    This paper introduces the concept of "management learning at the speed of life" as a metaphor to inspire millenials. Millenials may face three major problems in relation to management learning: lack of concentration, lack of engagement, and lack of socialization. Management learning at the speed of life addresses these potential problems through three dimensions: reflective, creative, and collaborative learning. This paper illustrates the benefits of reflective, creative, and collaborative spaces for millenials using practices from leadership and personal development courses that were offered over seven years in Canada, Turkey, and the UK. These courses incorporated the latest technology that brought the course activities up to the speed of life

    Motor Learning Induces Plasticity in the Resting Brain—Drumming Up a Connection

    Get PDF
    Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain structure. However, little is known about the dynamic interactions between different brain regions after extensive coordinated motor learning such as drumming. In this article, we have compared the resting-state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course of drumming (30-min drumming sessions, 3 days a week for 8 weeks) and 16 age-matched novice comparison participants. To identify brain regions showing significant FC differences before and after drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum training was associated with an increased FC between the posterior part of bilateral superior temporal gyri (pSTG) and the rest of the brain (i.e., all other voxels). These regions were then used to perform seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for rehabilitation treatments with exercise-based intervention to overcome impairments due to brain diseases are also discussed
    • 

    corecore