267 research outputs found

    Particulate PAH Emissions from Residential Biomass Combustion: Time-Resolved Analysis with Aerosol Mass Spectrometry

    Get PDF
    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (ANIS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. ANIS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (D-va similar to 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (D-va similar to 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions

    Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines

    Get PDF
    Background Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles’ physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. Results WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. Conclusion The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs

    Acute Cardiovascular Effects of Controlled Exposure to Dilute Petrodiesel and Biodiesel Exhaust in Healthy Volunteers: A Crossover Study

    Get PDF
    Abstract Background Air pollution derived from combustion is associated with considerable cardiorespiratory morbidity and mortality in addition to environmental effects. Replacing petrodiesel with biodiesel may have ecological benefits, but impacts on human health remain unquantified. The objective was to compare acute cardiovascular effects of blended and pure biodiesel exhaust exposure against known adverse effects of petrodiesel exhaust (PDE) exposure in human subjects. In two randomized controlled double-blind crossover studies, healthy volunteers were exposed to PDE or biodiesel exhaust for one hour. In study one, 16 subjects were exposed, on separate occasions, to PDE and 30% rapeseed methyl ester biodiesel blend (RME30) exhaust, aiming at PM10 300 μg/m3. In study two, 19 male subjects were separately exposed to PDE and exhaust from a 100% RME fuel (RME100) using similar engine load and exhaust dilution. Generated exhaust was analyzed for physicochemical composition and oxidative potential. Following exposure, vascular endothelial function was assessed using forearm venous occlusion plethysmography and ex vivo thrombus formation was assessed using a Badimon chamber model of acute arterial injury. Biomarkers of inflammation, platelet activation and fibrinolysis were measured in the blood. Results In study 1, PDE and RME30 exposures were at comparable PM levels (314 ± 27 μg/m3; (PM10 ± SD) and 309 ± 30 μg/m3 respectively), whereas in study 2, the PDE exposure concentrations remained similar (310 ± 34 μg/m3), but RME100 levels were lower in PM (165 ± 16 μg/m3) and PAHs, but higher in particle number concentration. Compared to PDE, PM from RME had less oxidative potential. Forearm infusion of the vasodilators acetylcholine, bradykinin, sodium nitroprusside and verapamil resulted in dose-dependent increases in blood flow after all exposures. Vasodilatation and ex vivo thrombus formation were similar following exposure to exhaust from petrodiesel and the two biodiesel formulations (RME30 and RME100). There were no significant differences in blood biomarkers or exhaled nitric oxide levels between exposures. Conclusions Despite differences in PM composition and particle reactivity, controlled exposure to biodiesel exhaust was associated with similar cardiovascular effects to PDE. We suggest that the potential adverse health effects of biodiesel fuel emissions should be taken into account when evaluating future fuel policies. Trial registration ClinicalTrials.gov, NCT01337882 /NCT01883466. Date of first enrollment March 11, 2011, registered April 19, 2011, i.e. retrospectively registered

    Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe

    Get PDF
    BACKGROUND: Although overweight and obesity have been studied in relation to individual cardiometabolic diseases, their association with risk of cardiometabolic multimorbidity is poorly understood. Here we aimed to establish the risk of incident cardiometabolic multimorbidity (ie, at least two from: type 2 diabetes, coronary heart disease, and stroke) in adults who are overweight and obese compared with those who are a healthy weight. METHODS: We pooled individual-participant data for BMI and incident cardiometabolic multimorbidity from 16 prospective cohort studies from the USA and Europe. Participants included in the analyses were 35 years or older and had data available for BMI at baseline and for type 2 diabetes, coronary heart disease, and stroke at baseline and follow-up. We excluded participants with a diagnosis of diabetes, coronary heart disease, or stroke at or before study baseline. According to WHO recommendations, we classified BMI into categories of healthy (20·0-24·9 kg/m(2)), overweight (25·0-29·9 kg/m(2)), class I (mild) obesity (30·0-34·9 kg/m(2)), and class II and III (severe) obesity (≥35·0 kg/m(2)). We used an inclusive definition of underweight (<20 kg/m(2)) to achieve sufficient case numbers for analysis. The main outcome was cardiometabolic multimorbidity (ie, developing at least two from: type 2 diabetes, coronary heart disease, and stroke). Incident cardiometabolic multimorbidity was ascertained via resurvey or linkage to electronic medical records (including hospital admissions and death). We analysed data from each cohort separately using logistic regression and then pooled cohort-specific estimates using random-effects meta-analysis. FINDINGS: Participants were 120  813 adults (mean age 51·4 years, range 35-103; 71 445 women) who did not have diabetes, coronary heart disease, or stroke at study baseline (1973-2012). During a mean follow-up of 10·7 years (1995-2014), we identified 1627 cases of multimorbidity. After adjustment for sociodemographic and lifestyle factors, compared with individuals with a healthy weight, the risk of developing cardiometabolic multimorbidity in overweight individuals was twice as high (odds ratio [OR] 2·0, 95% CI 1·7-2·4; p<0·0001), almost five times higher for individuals with class I obesity (4·5, 3·5-5·8; p<0·0001), and almost 15 times higher for individuals with classes II and III obesity combined (14·5, 10·1-21·0; p<0·0001). This association was noted in men and women, young and old, and white and non-white participants, and was not dependent on the method of exposure assessment or outcome ascertainment. In analyses of different combinations of cardiometabolic conditions, odds ratios associated with classes II and III obesity were 2·2 (95% CI 1·9-2·6) for vascular disease only (coronary heart disease or stroke), 12·0 (8·1-17·9) for vascular disease followed by diabetes, 18·6 (16·6-20·9) for diabetes only, and 29·8 (21·7-40·8) for diabetes followed by vascular disease. INTERPRETATION: The risk of cardiometabolic multimorbidity increases as BMI increases; from double in overweight people to more than ten times in severely obese people compared with individuals with a healthy BMI. Our findings highlight the need for clinicians to actively screen for diabetes in overweight and obese patients with vascular disease, and pay increased attention to prevention of vascular disease in obese individuals with diabetes. FUNDING: NordForsk, Medical Research Council, Cancer Research UK, Finnish Work Environment Fund, and Academy of Finland

    Association of Alcohol-Induced Loss of Consciousness and Overall Alcohol Consumption With Risk for Dementia

    Get PDF
    This cohort study examines the association of overall consumption of alcohol and resultant loss of consciousness with risk for dementia. Question Are alcohol-induced loss of consciousness and heavy weekly alcohol consumption associated with increased risk of future dementia? Findings In this multicohort study of 131x202f;415 adults, a 1.2-fold excess risk of dementia was associated with heavy vs moderate alcohol consumption. Those who reported having lost consciousness due to alcohol consumption, regardless of their overall weekly consumption, had a 2-fold increased risk of dementia compared with people who had not lost consciousness and were moderate drinkers. Meaning The findings of this study suggest that alcohol-induced loss of consciousness is a long-term risk factor for dementia among both heavy and moderate drinkers. Importance Evidence on alcohol consumption as a risk factor for dementia usually relates to overall consumption. The role of alcohol-induced loss of consciousness is uncertain. Objective To examine the risk of future dementia associated with overall alcohol consumption and alcohol-induced loss of consciousness in a population of current drinkers. Design, Setting, and Participants Seven cohort studies from the UK, France, Sweden, and Finland (IPD-Work consortium) including 131x202f;415 participants were examined. At baseline (1986-2012), participants were aged 18 to 77 years, reported alcohol consumption, and were free of diagnosed dementia. Dementia was examined during a mean follow-up of 14.4 years (range, 12.3-30.1). Data analysis was conducted from November 17, 2019, to May 23, 2020. Exposures Self-reported overall consumption and loss of consciousness due to alcohol consumption were assessed at baseline. Two thresholds were used to define heavy overall consumption: greater than 14 units (U) (UK definition) and greater than 21 U (US definition) per week. Main Outcomes and Measures Dementia and alcohol-related disorders to 2016 were ascertained from linked electronic health records. Results Of the 131x202f;415 participants (mean [SD] age, 43.0 [10.4] years; 80x202f;344 [61.1%] women), 1081 individuals (0.8%) developed dementia. After adjustment for potential confounders, the hazard ratio (HR) was 1.16 (95% CI, 0.98-1.37) for consuming greater than 14 vs 1 to 14 U of alcohol per week and 1.22 (95% CI, 1.01-1.48) for greater than 21 vs 1 to 21 U/wk. Of the 96x202f;591 participants with data on loss of consciousness, 10x202f;004 individuals (10.4%) reported having lost consciousness due to alcohol consumption in the past 12 months. The association between loss of consciousness and dementia was observed in men (HR, 2.86; 95% CI, 1.77-4.63) and women (HR, 2.09; 95% CI, 1.34-3.25) during the first 10 years of follow-up (HR, 2.72; 95% CI, 1.78-4.15), after excluding the first 10 years of follow-up (HR, 1.86; 95% CI, 1.16-2.99), and for early-onset (= 65 y: HR, 2.25; 95% CI, 1.38-3.66) dementia, Alzheimer disease (HR, 1.98; 95% CI, 1.28-3.07), and dementia with features of atherosclerotic cardiovascular disease (HR, 4.18; 95% CI, 1.86-9.37). The association with dementia was not explained by 14 other alcohol-related conditions. With moderate drinkers (1-14 U/wk) who had not lost consciousness as the reference group, the HR for dementia was twice as high in participants who reported having lost consciousness, whether their mean weekly consumption was moderate (HR, 2.19; 95% CI, 1.42-3.37) or heavy (HR, 2.36; 95% CI, 1.57-3.54). Conclusions and Relevance The findings of this study suggest that alcohol-induced loss of consciousness, irrespective of overall alcohol consumption, is associated with a subsequent increase in the risk of dementia.Peer reviewe

    Long working hours, socioeconomic status, and the risk of incident type 2 diabetes : a meta-analysis of published and unpublished data from 222 120 individuals

    Get PDF
    Background Working long hours might have adverse health effects, but whether this is true for all socioeconomic status groups is unclear. In this meta-analysis stratified by socioeconomic status, we investigated the role of long working hours as a risk factor for type 2 diabetes. Methods We identified four published studies through a systematic literature search of PubMed and Embase up to April 30, 2014. Study inclusion criteria were English-language publication; prospective design (cohort study); investigation of the effect of working hours or overtime work; incident diabetes as an outcome; and relative risks, odds ratios, or hazard ratios (HRs) with 95% CIs, or sufficient information to calculate these estimates. Additionally, we used unpublished individual-level data from 19 cohort studies from the Individual-Participant-Data Meta-analysis in Working-Populations Consortium and international open-access data archives. Effect estimates from published and unpublished data from 222 120 men and women from the USA, Europe, Japan, and Australia were pooled with random-effects meta-analysis. Findings During 1.7 million person-years at risk, 4963 individuals developed diabetes (incidence 29 per 10 000 person-years). The minimally adjusted summary risk ratio for long (>= 55 h per week) compared with standard working hours (35-40 h) was 1.07 (95% CI 0.89-1.27, difference in incidence three cases per 10 000 person-years) with significant heterogeneity in study-specific estimates (I-2 = 53%, p = 0.0016). In an analysis stratified by socioeconomic status, the association between long working hours and diabetes was evident in the low socioeconomic status group (risk ratio 1.29, 95% CI 1.06-1.57, difference in incidence 13 per 10 000 person-years, I-2 = 0%, p = 0.4662), but was null in the high socioeconomic status group (1. 00, 95% CI 0.80-1.25, incidence diff erence zero per 10 000 person-years, I-2 = 15%, p = 0.2464). The association in the low socioeconomic status group was robust to adjustment for age, sex, obesity, and physical activity, and remained after exclusion of shift workers. Interpretation In this meta-analysis, the link between longer working hours and type 2 diabetes was apparent only in individuals in the low socioeconomic status groups. Copyright (C) Kivimaki et al. Open Access article distributed under the terms of CC BY.Peer reviewe
    corecore