3,424 research outputs found

    NEMA characterization of the SAFIR prototype PET insert

    Get PDF
    Background: The SAFIR prototype insert is a preclinical Positron Emission Tomography (PET) scanner built to acquire dynamic images simultaneously with a 7 T Bruker Magnetic Resonance Imaging (MRI) scanner. The insert is designed to perform with an excellent coincidence resolving time of 194 ps Full Width Half Maximum (FWHM) and an energy resolution of 13.8% FWHM. These properties enable it to acquire precise quantitative images at activities as high as 500 MBq suitable for studying fast biological processes within short time frames (&lt; 5 s). In this study, the performance of the SAFIR prototype insert is evaluated according to the NEMA NU 4-2008 standard while the insert is inside the MRI without acquiring MRI data.Results: Applying an energy window of 391–601 keV and a coincidence time window of 500 ps the following results are achieved. The average spatial resolution at 5 mm radial offset is 2.6 mm FWHM when using the Filtered Backprojection 3D Reprojection (FBP3DRP) reconstruction method, improving to 1.2 mm when using the Maximum Likelihood Expectation Maximization (MLEM) method. The peak sensitivity at the center of the scanner is 1.06%. The Noise Equivalent count Rate (NECR) is 799 kcps at the highest measured activity of 537 MBq for the mouse phantom and 121 kcps at the highest measured activity of 624 MBq for the rat phantom. The NECR peak is not yet reached for any of the measurements. The scatter fractions are 10.9% and 17.8% for the mouse and rat phantoms, respectively. The uniform region of the image quality phantom has a 3.0% STD, with a 4.6% deviation from the expected number of counts per voxel. The spill-over ratios for the water and air chambers are 0.18 and 0.17, respectively.Conclusions: The results satisfy all the requirements initially considered for the insert, proving that the SAFIR prototype insert can obtain dynamic images of small rodents at high activities (∼ 500 MBq) with a high sensitivity and an excellent count-rate performance.</p

    AX-PET: A novel PET concept with G-APD readout

    Get PDF
    Abstract The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 keV and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like 22 Na sources. Their performance in terms of energy ( R energy ≈ 11.8 % (FWMH) at 511 keV) and spatial resolution was assessed ( σ axial ≈ 0.65 mm ), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    Search for Heavy Isosinglet Neutrino in e+e- Annihilation at LEP

    Get PDF
    We report on a search for the first generation heavy neutrino that is an isosinglet under the standard SU(2)_L gauge group. The data collected with the L3 detector at center-of-mass energies between 130 GeV and 208 GeV are used.The decay channel N_e --> eW is investigated and no evidence is found for a heavy neutrino, N_e, in a mass range between 80 GeV and 205 GeV. Upper limits on the mixing parameter between the heavy and light neutrino are derived

    Study of Z Boson Pair Production in e^+e^- Interactions at \sqrt{s}=192 - 202 GeV

    Full text link
    The cross section for the production of Z boson pairs is measured using the data collected by the L3 detector at LEP in 1999 in e^+e^- collisions at centre-of-mass energies ranging from 192 GeV up to 202 GeV. Events in all the visible final states are selected, measuring the cross section of this process. The special case of final states containing b quarks is also investigated. All results are in agreement with the Standard Model predictions

    Search for the standard model Higgs boson at LEP

    Get PDF

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore