51 research outputs found

    Opposing temperature dependence of the stretching response of single PEG and PNiPAM polymers

    Get PDF
    The response of switchable polymer blends and coatings to temperature variation is important for the development of high-performance materials. Although this has been well studied for bulk materials, a proper understanding at the molecular level, in particular for high stretching forces, is still lacking. Here we investigate the molecular details of the temperature-dependent elastic response of two widely used water-soluble polymers, namely, polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNiPAM) with a combined approach using atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) experiments and molecular dynamics (MD) simulations. SMFS became possible by the covalent attachment of long and defined single polymers featuring a functional end group. Most interestingly, varying the temperature produces contrasting effects for PEG and PNiPAM. Surprising as these results might occur at first sight, they can be understood with the help of MD simulations in explicit water. We find that hydration is widely underestimated for the mechanics of macromolecules and that a polymer chain has competing energetic and entropic elastic components. We propose to use the temperature dependence to quantify the energetic behavior for high stretching forces. This fundamental understanding of temperature-dependent single polymer stretching response might lead to innovations like fast switchable polymer blends and coatings with polymer chains that act antagonistically

    Theoretical model for ultracold molecule formation via adaptive feedback control

    Full text link
    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than a factor of 10 compared to unshaped pulses at the same pump-dump delay time, and by 40% compared to unshaped pulses at the respective optimal pump-dump delay time. Since our model yields directly the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

    Immune Cell Infiltration of the Primary Tumor, Not PD-L1 Status, Is Associated With Improved Response to Checkpoint Inhibition in Metastatic Melanoma

    Get PDF
    Immune checkpoint inhibition has resulted in dramatic improvements in overall and relapse-free survival in patients with metastatic melanoma. The most commonly used immune checkpoint inhibitors are monoclonal antibodies targeting programmed cell death protein 1 and cytotoxic T-lymphocyte-associated protein 4. Unfortunately, a significant subset of patients fail to respond to these therapies, which has resulted in intense research efforts to identify the factors which are associated with treatment response. To this end, we investigated immune cell infiltration in primary melanomas and melanoma metastases, in addition to tumor cell PD-L1 expression, to determine whether these factors are associated with an improved outcome after immune checkpoint inhibition. Indeed, the extent of the immune cell infiltration in the primary melanoma, measured by the Immunoscore, was associated with a significantly improved response to immune checkpoint inhibition in terms of increased overall survival. However, the Immunoscore did not predict which patients would respond to treatment. The Immunoscore was significantly reduced in metastases when compared to primary melanomas. In contrast, PD-L1 expression, exhaustively tested using four commercially available anti-PD-L1 clones, did not differ significantly between primary tumors and melanoma metastases and was not associated treatment response. Whilst replication in larger, prospective studies is required, our data demonstrates the relevance of immune cell infiltration in the primary melanoma as a novel marker of improved overall survival in response to immune checkpoint inhibition

    Дослідження структури порушених відкритою розробкою земель й пошук шляхів вдосконалення рекультивації залишкових виробок кар'єрів

    Get PDF
    Стаття присвячена дослідженням структури порушених земель, на ділянках з видобутку корисних копалин відкритим способом. Наведено площі порушень земель при розробці основних видів корисних копалин. Проаналізовано ризики, що виникають із несвоєчасною рекультивацією земель гірничого відводу, а також від покинутих гірничих виробок старих кар'єрів. Паралельно розглянуті обсяги відходів гірничого виробництва та їх повторне використання в якості заповнювача для залишкових вироблених просторів кар'єрів.The article is devoted to the research of land violation indicators at the extraction of minerals by surface mining method. Data gives about the land violations area at the mining key minerals. Ana-lyzed the risks from the not-on-time reclamation of the mining clam and abandoned excavations of the old quarries. In parallel considered the volumes of mining wastes and their reuse as aggregate for filling residual spaces of surface mines.Статья посвящена исследованиям площадей нарушения земель, связанных с добычей полезных ископаемых открытым способом. Приведены площади нарушений земель при разработке основных видов полезных ископаемых. Проанализированы риски, представляемые несвоевременной рекультивацией земель горного отвода, а также заброшенными горными выработками старых карьеров. Параллельно рассмотрены объемы отходов горного производства и их повторное использование в качестве заполнителя для остаточных выработанных пространств карьеров

    Development of a World Health Organization International Reference Panel for different genotypes of hepatitis E virus for nucleic acid amplification testing.

    Get PDF
    Globally, hepatitis E virus (HEV) is a major cause of acute viral hepatitis. Epidemiology and clinical presentation of hepatitis E vary greatly by location and are affected by the HEV genotype. Nucleic acid amplification technique (NAT)-based assays are important for the detection of acute HEV infection as well for monitoring chronic cases of hepatitis E. The aim of the study was to evaluate a panel of samples containing different genotypes of HEV for use in nucleic NAT-based assays. The panel of samples comprises eleven different members including HEV genotype 1a (2 strains), 1e, 2a, 3b, 3c, 3e, 3f, 4c, 4g as well as a human isolate related to rabbit HEV. Each laboratory assayed the panel members directly against the 1 World Health Organization (WHO) International Standard (IS) for HEV RNA (6329/10) which is based upon a genotype 3 a strain. The samples for evaluation were distributed to 24 laboratories from 14 different countries and assayed on three separate days. Of these, 23 participating laboratories returned a total of 32 sets of data; 17 from quantitative assays and 15 from qualitative assays. The assays used consisted of a mixture of in-house developed and commercially available assays. The results showed that all samples were detected consistently by the majority of participants, although in some cases, some samples were detected less efficiently. Based on the results of the collaborative study the panel (code number 8578/13) was established as the "1st International Reference Panel (IRP) for all HEV genotypes for NAT-based assays" by the WHO Expert Committee on Biological Standardization. This IRP will be important for assay validation and ensuring adequate detection of different genotypes and clinically important sub-genotypes of HEV

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources

    Traces of trauma – a multivariate pattern analysis of childhood trauma, brain structure and clinical phenotypes

    Get PDF
    Background: Childhood trauma (CT) is a major yet elusive psychiatric risk factor, whose multidimensional conceptualization and heterogeneous effects on brain morphology might demand advanced mathematical modeling. Therefore, we present an unsupervised machine learning approach to characterize the clinical and neuroanatomical complexity of CT in a larger, transdiagnostic context. Methods: We used a multicenter European cohort of 1076 female and male individuals (discovery: n = 649; replication: n = 427) comprising young, minimally medicated patients with clinical high-risk states for psychosis; patients with recent-onset depression or psychosis; and healthy volunteers. We employed multivariate sparse partial least squares analysis to detect parsimonious associations between combinations of items from the Childhood Trauma Questionnaire and gray matter volume and tested their generalizability via nested cross-validation as well as via external validation. We investigated the associations of these CT signatures with state (functioning, depressivity, quality of life), trait (personality), and sociodemographic levels. Results: We discovered signatures of age-dependent sexual abuse and sex-dependent physical and sexual abuse, as well as emotional trauma, which projected onto gray matter volume patterns in prefronto-cerebellar, limbic, and sensory networks. These signatures were associated with predominantly impaired clinical state- and trait-level phenotypes, while pointing toward an interaction between sexual abuse, age, urbanicity, and education. We validated the clinical profiles for all three CT signatures in the replication sample. Conclusions: Our results suggest distinct multilayered associations between partially age- and sex-dependent patterns of CT, distributed neuroanatomical networks, and clinical profiles. Hence, our study highlights how machine learning approaches can shape future, more fine-grained CT research
    corecore