121 research outputs found
On velocity-space sensitivity of fast-ion D-alpha spectroscopy
The velocity-space observation regions and sensitivities in fast-ion D α (FIDA) spectroscopy measurements are often described by so-called weight functions. Here we derive expressions for FIDA weight functions accounting for the Doppler shift, Stark splitting, and the charge-exchange reaction and electron transition probabilities. Our approach yields an efficient way to calculate correctly scaled FIDA weight functions and implies simple analytic expressions for their boundaries that separate the triangular observable regions in ( v ‖ , v ⊥ )-space from the unobservable regions. These boundaries are determined by the Doppler shift and Stark splitting and could until now only be found by numeric simulation
High-definition velocity-space tomography of fast-ion dynamics
Velocity-space tomography of the fast-ion distribution function in a fusion plasma is usually a photon-starved tomography method due to limited optical access and signal-to-noise ratio of fast-ion Dα (FIDA) spectroscopy as well as the strive for high-resolution images. In high-definition tomography, prior information makes up for this lack of data. We restrict the target velocity space through the measured absence of FIDA light, impose phase-space densities to be non-negative, and encode the known geometry of neutral beam injection (NBI) sources. We further use a numerical simulation as prior information to reconstruct where in velocity space the measurements and the simulation disagree. This alternative approach is demonstrated for four-view as well as for two-view FIDA measurements. The high-definition tomography tools allow us to study fast ions in sawtoothing plasmas and the formation of NBI peaks at full, half and one-third energy by time-resolved tomographic movies
Deuterium temperature, drift velocity, and density measurements in non-Maxwellian plasmas at ASDEX Upgrade
We measure the deuterium density, the parallel drift velocity, and parallel and perpendicular temperatures (T∥, T⊥) in non-Maxwellian plasmas at ASDEX Upgrade. This is done by taking moments of the ion velocity distribution function measured by tomographic inversion of five simultaneously acquired spectra of Dα-light. Alternatively, we fit the spectra using a bi-Maxwellian distribution function. The measured kinetic temperatures (T∥ = 9 keV, T⊥ = 11 keV) reveal the anisotropy of the plasma and are substantially higher than the measured boron temperature (7 keV). The Maxwellian deuterium temperature computed with TRANSP (6 keV) is not uniquely measurable due to the fast ions. Nevertheless, simulated kinetic temperatures accounting for fast ions based on TRANSP (T∥= 8.3 keV, T⊥ = 10.4 keV) are in excellent agreement with the measurements. Similarly, the Maxwellian deuterium drift velocity computed with TRANSP (300 km s-1) is not uniquely measurable, but the simulated kinetic drift velocity accounting for fast ions agrees with the measurements (400 km s-1) and is substantially larger than the measured boron drift velocity (270 km s-1). We further find that ion cyclotron resonance heating elevates T∥ and T⊥ each by 2 keV without evidence for preferential heating in the Dα spectra. Lastly, we derive an expression for the 1D projection of an arbitrarily drifting bi-Maxwellian onto a diagnostic line-of-sight
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond
The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added
A detection algorithm for bifurcations in dynamical systems using reduced order models
Abstract: Finite element or finite volume discretizations of distributed parameter systems (DPS) typically lead to high order finite dimensional systems. Model approximation is then an important first step towards the construction of optimal controllers. However, model reduction methods hardly take model uncertainties and parameter variations into account. As such, reduced order models are not well equipped when uncertain system parameters vary in time. This is particularly true when system behavior does not depend continuously on the parameters. It is shown in this paper that the performance of reduced order models inferred from Galerkin projections and proper orthogonal decompositions can deteriorate considerable when system parameters vary over bifurcation points. Motivated by these observations, we propose a detection mechanism based on reduced order models and proper orthogonal decompositions that allows to characterize the influence of parameter variations around a bifurcation value. for this, a hybrid model structure is proposed. The ideas are applied on the example of a tubular reactor. In particular, this paper discusses the difficulties in approximating the transition from extinction to ignited state in a tubular reactor
A detection algorithm for bifurcations in dynamical systems using reduced order models
Abstract: Finite element or finite volume discretizations of distributed parameter systems (DPS) typically lead to high order finite dimensional systems. Model approximation is then an important first step towards the construction of optimal controllers. However, model reduction methods hardly take model uncertainties and parameter variations into account. As such, reduced order models are not well equipped when uncertain system parameters vary in time. This is particularly true when system behavior does not depend continuously on the parameters. It is shown in this paper that the performance of reduced order models inferred from Galerkin projections and proper orthogonal decompositions can deteriorate considerable when system parameters vary over bifurcation points. Motivated by these observations, we propose a detection mechanism based on reduced order models and proper orthogonal decompositions that allows to characterize the influence of parameter variations around a bifurcation value. for this, a hybrid model structure is proposed. The ideas are applied on the example of a tubular reactor. In particular, this paper discusses the difficulties in approximating the transition from extinction to ignited state in a tubular reactor
- …