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Abstract. The velocity-space observation regions and sensitivities in fast-ion Dα

(FIDA) spectroscopy measurements are often described by so-called weight functions.

Here we derive expressions for FIDA weight functions accounting for the Doppler shift,

Stark splitting, and the charge-exchange reaction and electron transition probabilities.

Our approach yields an efficient way to calculate correctly scaled FIDA weight

functions and implies simple analytic expressions for their boundaries that separate the

triangular observable regions in (v‖, v⊥)-space from the unobservable regions. These

boundaries are determined by the Doppler shift and Stark splitting and could until

now only be found by numeric simulation.
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1. Introduction

Fast-ion Dα (FIDA) spectroscopy [1–3] is an application of charge-exchange

recombination (CER) spectroscopy [4, 5] based on deuterium [6–11]. Deuterium ions

in the plasma are neutralized in charge-exchange reactions with deuterium atoms from

a neutral beam injector (NBI). The neutralized deuterium atoms are often in excited

states, and hence they can emit Dα-photons which are Doppler-shifted due to the motion

of the excited atoms. As the excited atoms inherit the velocities of the deuterium ions

before the charge-exchange reaction, spectra of Doppler-shifted Dα-light are sensitive to

the velocity distribution function of deuterium ions in the plasma. The measurement

volume is given by the intersection of the NBI path and the line-of-sight of the CER

diagnostic. Dα-photons due to bulk deuterium ions typically have Doppler shifts of

about 1-2 nm whereas Dα-photons due to fast deuterium, which is the FIDA light, can

have Doppler shifts of several nanometers. This paper deals with FIDA light but as the

physics of Dα-light due to bulk deuterium ions is the same, our methods also apply to

deuterium-based CER spectroscopy. The FIDA or CER-Dα light is sometimes obscured

by Doppler shifted Dα-light from the NBI, unshifted Dα-light from the plasma edge,

bremsstrahlung or line radiation from impurities.

FIDA spectra can be related to 2D velocity space by so-called weight functions

[2,3,12]. Weight functions have been used in four ways: First, they quantify the velocity-

space sensitivity of FIDA measurements, and hence they also separate the observable

region in velocity space for a particular wavelength range from the unobservable region

[2, 3, 13–29]. Second, they reveal how much FIDA light is emitted resolved in velocity

space for a given fast-ion velocity distribution function [2, 3, 24–30]. The ions in the

regions with the brightest FIDA light are then argued to dominate the measurement.

Third, weight functions have been used to calculate FIDA spectra from given fast-

ion velocity distribution functions [14, 31–33], eliminating the Monte-Carlo approach

of the standard FIDA analysis code FIDASIM [34]. Fourth, recent tomographic

inversion algorithms to infer 2D fast-ion velocity distribution functions directly from

the measurements rely heavily on weight functions [12, 31–33, 35].

Here we present a comprehensive discussion of FIDA weight functions and derive

analytic expressions describing them. FIDA weight functions have often been presented

in arbitrary units, relative units or without any units [2, 3, 15–28, 30] which is sufficient

for their use as indicator of the velocity-space interrogation region or of the velocity-

space origin of FIDA light. However, correctly scaled FIDA weight functions, which

are necessary to calculate FIDA spectra or tomographic inversions, have only been

implemented in the FIDASIM code recently [13, 14, 29, 31–33]. Weight functions are

traditionally calculated using the FIDASIM code by computing the FIDA light from

an ion on a fine grid in 2D velocity space and gyroangle. It is then counted how

many photons contribute to a particular wavelength range for a given observation angle

and point in velocity space using models for the Doppler shift, Stark splitting, charge-

exchange probabilities and electron transition probabilities.
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In section 2 we define weight functions and motivate their interpretation in terms

of probabilities. Our viewpoint provides insights into functional dependencies between

wavelength space and 2D velocity space that are not revealed by the traditional

numerical calculation approach using FIDASIM. As a consequence we demonstrate

how Doppler shift, Stark splitting, charge-exchange probabilities as well as the

electron transition probabilities contribute to the velocity-space sensitivity of FIDA

measurements. Section 3 focuses on weight functions implied by the Doppler shift

alone as a relatively simple approximation. In section 4 we additionally treat Stark

splitting and in section 5 the charge-exchange and the electron transition processes.

In section 6 we present full FIDA weight functions accounting for these four effects.

In section 7 we deduce exact analytic expressions for the boundaries of FIDA weight

functions. We discuss the applicability of our results to CER spectroscopy and other

fast-ion diagnostics in section 8 and conclude in section 9.

2. Definitions of weight functions

The velocity-space interrogation or observation regions of FIDA diagnostics are

described by weight functions wvol which are determined by charge-exchange

probabilities, electron transition probabilities, Stark splitting and the Doppler shift.

They thereby depend on position space and velocity space. Weight functions are defined

to obey [2, 3, 12]

I(λ1, λ2, φ) =
∫

vol

∫ ∞

0

∫ ∞

−∞
wvol(λ1, λ2, φ, v‖, v⊥,x)f(v‖, v⊥,x)dv‖dv⊥dx.

(1)

I(λ1, λ2, φ) is the intensity of FIDA light in the wavelength range λ1 < λ < λ2 with a

viewing angle φ between the line-of-sight of the FIDA diagnostic and the magnetic field.

(v‖, v⊥) denote velocities parallel and perpendicular to the magnetic field, respectively,

and x denotes the spatial coordinates. Here we use (v‖, v⊥)-coordinates rather than the

more widespread (E, p)-coordinates (energy, pitch) since our mathematical expressions

are simpler in (v‖, v⊥)-coordinates. The energy and the pitch are defined as

E =
1

2
mD(v

2
‖ + v2⊥) (2)

p = −v‖
v

(3)

where mD is the mass of a deuteron and v =
√

v2‖ + v2⊥ is the velocity magnitude. Note

that the pitch is positive for co-current particles as usual. Key expressions are given in

(E, p)-coordinates in the appendix. We assume wvol(λ1, λ2, φ, v‖, v⊥,x) and the fast-ion

distribution function f(v‖, v⊥,x) to be spatially uniform within the small measurement

volume V . This may be violated near the foot of the pedestal where the density gradient

length scale could be comparable with the mean free path of the emitters, but it should

be fulfilled in the core plasma. With

w(λ1, λ2, φ, v‖, v⊥) = V wvol(λ1, λ2, φ, v‖, v⊥,x) (4)
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equation 1 becomes

I(λ1, λ2, φ) =
∫ ∞

0

∫ ∞

−∞
w(λ1, λ2, φ, v‖, v⊥)f(v‖, v⊥)dv‖dv⊥. (5)

Weight functions w relate the FIDA intensity I(λ1, λ2, φ) with units [Nph/(s×sr×m2)]

to the 2D fast-ion velocity distribution function with units [Ni/(m
3 × (m/s)2)]. The

units of FIDA weight functions w are hence [Nph/(s × sr × m2 × Ni/m
3)], i.e. FIDA

weight functions w quantify the FIDA intensity per unit ion density in the wavelength

range λ1 < λ < λ2 for a viewing angle φ as a function of the ion velocity (v‖, v⊥).

The units of FIDA weight functions wvol are [Nph/(s × sr ×m2 × Ni)], i.e. the FIDA

intensity per ion in λ1 < λ < λ2 for a viewing angle φ as function of (v‖, v⊥). We will

split FIDA weight functions w into a FIDA intensity function R(v‖, v⊥) and a probability

prob(λ1 < λ < λ2|φ, v‖, v⊥) according to

w(λ1, λ2, φ, v‖, v⊥) = R(v‖, v⊥)prob(λ1 < λ < λ2|φ, v‖, v⊥). (6)

R(v‖, v⊥) determines the total FIDA intensity for any wavelength of the photons per unit

ion density. It depends only on the charge-exchange and electron transition processes,

but not on the Doppler shift or Stark splitting that only change the wavelength of

the photons. prob(λ1 < λ < λ2|φ, v‖, v⊥) determines the probability that a randomly

selected detected photon has a wavelength in a particular range λ1 < λ < λ2 for a given

projection angle φ and (v‖, v⊥)-coordinates. The conditioning symbol ”|” means ”given”.

The subject of this paper is the derivation of this probability. prob(λ1 < λ < λ2|φ, v‖, v⊥)
depends on the Doppler shift and Stark Splitting as well as on the charge-exchange and

electron transition processes which in turn all depend on the gyroangle γ of the ion at

the time of the charge-exchange reaction. We treat γ ∈ [0, 2π] as a random variable since

we do not know the phases of all ions in the plasma, i.e. the initial conditions of any

set of equations determining the ion motion are unknown as always in problems with a

very large number of degrees of freedom. Since λ is determined by γ, it is also treated as

random variable. Probabilities are always dimensionless numbers in the interval [0,1],

and hence the FIDA intensity function R(v‖, v⊥) has the same units as weight functions.

R(v‖, v⊥) is a common factor of all weight functions for a given φ at any wavelength.

On the contrary, the probability function depends on the wavelength range and the

projection angle φ and hence contains the spectral information. We compute R(v‖, v⊥)

using FIDASIM by modelling the charge-exchange and the electron transition processes.

Examples of the FIDA intensity function for NBI Q3 at ASDEX Upgrade, which is

used for FIDA measurements, are shown in figure 1(a) in (v‖, v⊥)-coordinates and in

figure 1(b) in (E, p)-coordinates. The sensitivity of FIDA is low for very large ion

energies where few photons are generated per ion. Ions with positive pitch generate

more photons per ion than ions with negative pitch for Q3.

Usually one measures spectral or specific intensities Iλ, i.e. the intensity per

wavelength with units [Nph/(s×sr×m2×nm)]. The intensity and the spectral intensity

are related by

I(λ1, λ2, φ) =
∫ λ2

λ1

Iλ(λ, φ)dλ. (7)
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Figure 1. The FIDA intensity function R shows the total FIDA intensity per

ion as function of (a) (v‖, v⊥)-coordinates and (b) (E,p)-coordinates. The units are

[Nph/(s×sr×m2×Ni/m
3)]. The Balmer-alpha photons can have any Doppler shifted

wavelength. We computed R using FIDASIM for NBI Q3 at ASDEX Upgrade. Q3

has an injection energy of 60 keV.

The spectral intensity Iλ(λ, φ) can likewise be related to f(v‖, v⊥) by a probability

density function pdf(λ|φ, v‖, v⊥) that then leads to a differential weight function dw as

Iλ(λ, φ) =
∫ ∞

0

∫ ∞

−∞
dw(λ, φ, v‖, v⊥)f(v‖, v⊥)dv‖dv⊥ (8)

with

dw(λ, φ, v‖, v⊥) = R(v‖, v⊥)pdf(λ|φ, v‖, v⊥). (9)

However, the weight functions we discuss here are related to a wavelength range rather

than a particular wavelength since FIDA intensity measurements can only be made for

a wavelength range and not for a single wavelength. Mathematically this is reflected in

the always finite amplitudes of w whereas dw is singular at its boundary.

3. Doppler shift

An approximate shape of FIDA weight functions can be found by considering only the

Doppler shift λ−λ0 where λ0 = 656.1 nm is the wavelength of the unshifted Dα-line and

λ is the Doppler-shifted wavelength. In this section we derive this approximate shape

by neglecting Stark splitting and by assuming that the Dα-photon emission is equally

likely for all gyroangles γ of the ion at the time of the charge exchange reaction. The

probability density function in γ of randomly selected detected Dα photons is

pdfDα
(γ | v‖, v⊥) = 1/2π. (10)

Stark splitting and an arbitrary pdfDα describing charge-exchange and electron

transition probabilities will be introduced into the model in the next two sections. The

Doppler shift depends on the projected velocity u of the ion along the line-of-sight
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according to

λ− λ0 = uλ0/c (11)

where c is the speed of light. Equation 11 assumes u ≪ c. Consider a gyrating ion

with velocity (v‖, v⊥) in a magnetic field. The ion is neutralized in a charge-exchange

reaction which ultimately leads to emission of a Dα-photon. We define a coordinate

system such that for γ = 0 the velocity vector of the ion is in the plane defined by the

unit vector along the line-of-sight û and B such that v · û > 0. Then the ion velocity is

v = v‖B̂+ v⊥ cos γv̂⊥1 − v⊥ sin γv̂⊥2 (12)

and the unit vector along the line-of-sight is

û = cosφB̂+ sinφv̂⊥1 (13)

The velocity component u of the ion along the line-of-sight at a projection angle φ to

the magnetic field is then given by [12]

u = v · û = v‖ cos φ+ v⊥ sin φ cos γ. (14)

The projections of the ion velocity v and the unit vector v̂ × B̂ (relevant for Stark

splitting) onto the line-of-sight in this coordinate system are illustrated in figure 2.

Equation 14 shows that u is a random variable which depends on the random variable

(a) (b)

Figure 2. Projection of the ion velocity (v‖, v⊥) and the unit vector v̂ × B̂ onto the

line-of-sight. The latter is required for the treatment of Stark splitting discussed in

section 4.

γ ∈ [0, 2π]. We now calculate the probability prob(u1 < u < u2|φ, v‖, v⊥) that the ion

has a projected velocity between u1 and u2 at the time of the charge-exchange reaction

and therefore a Doppler-shifted Dα-line wavelength between λ1 and λ2 according to

equation 11. For given (v‖, v⊥) with v⊥ 6= 0 and projection angle φ 6= 0, the projected

velocity depends on the gyroangle γ. Conversely, we can calculate the gyroangles that

lead to a given projected velocity u by solving equation 14 for γ:

γ = arccos
u− v‖ cosφ

v⊥ sin φ
. (15)
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The arccos function is defined for 0 < γ < π, and a second solution in π < γ′ < 2π is

given by

γ′ = 2π − γ. (16)

Using equations 15 and 16 we can calculate gyroangles γ1 and γ2 and γ′
1 and γ′

2

corresponding to the limits u1 and u2 and transform the calculation of the probability

to γ-space:

prob(u1 < u < u2|φ, v‖, v⊥)
= prob(γ2 < γ < γ1|v‖, v⊥) + prob(γ′

1 < γ < γ′
2|v‖, v⊥)

=
∫ γ1

γ2
pdfDα

(γ | v‖, v⊥)dγ +
∫ γ′

2

γ′
1

pdfDα
(γ | v‖, v⊥)dγ (17)

As we here assume a uniform probability density, we can integrate equation 17

analytically:

prob(u1 < u < u2|φ, v‖, v⊥) =
γ1 − γ2
2π

+
γ′
2 − γ′

1

2π
=

γ1 − γ2
π

. (18)

The probability prob(u1 < u < u2|φ, v‖, v⊥) is thus the fraction of the gyroorbit that

leads to a projected velocity between u1 and u2. Substitution of γ using equation 15

gives

prob(u1 < u < u2|φ, v‖, v⊥)

=
1

π

(

arccos
u1 − v‖ cos φ

v⊥ sin φ
− arccos

u2 − v‖ cos φ

v⊥ sin φ

)

. (19)

Equation 19 is singular for v⊥ = 0 or φ = 0. If φ = 0, the projected velocity is just

the parallel velocity as equation 14 reduces to u = v‖. Then the probability function

becomes

prob(u1 < u < u2|φ = 0, v‖, v⊥) =

{

1 for u1 < v‖ < u2

0 otherwise
(20)

which is identical to equation 19 in the limit φ → 0. For v⊥ = 0, i.e. on the v‖-axis

corresponding to ions not actually gyrating, equation 14 reduces to u = v‖ cosφ, and

the probability function becomes

prob(u1 < u < u2|φ, v‖, v⊥ = 0) =

{

1 for u1/ cosφ < v‖ < u2/ cosφ

0 otherwise
(21)

Lastly, we note that the argument of the arccos function is often outside the range [-

1;1]. In this case the arccos is complex, and we take the real part to obtain physically

meaningful quantities. Equation 19 is a weight function describing just the projection

onto the line-of-sight. We have previously derived the corresponding probability density

function pdf(u|φ, v‖, v⊥) to describe the velocity-space sensitivity of collective Thomson

scattering (CTS) measurements [12]. The pdf can be found from the probability function

by letting u1, u2 → u:

pdf(u|φ, v‖, v⊥) = lim
u1,u2→u

prob(u1 < u < u2|φ, v‖, v⊥)
u2 − u1
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=
1

πv⊥ sinφ

√

1−
(

u−v‖ cosφ

v⊥ sinφ

)2
. (22)

Equations 19 to 22 have been used to interpret CTS measurements at TEXTOR [36]

and should have great utility for CTS measurements at ASDEX Upgrade [37–39],

LHD [40, 41] or ITER [42–44].

To obtain the probability function in λ-space, we first find the integration limits by

substituting u in equation 15 using equation 11:

γ = arccos
c( λ

λ0

− 1)− v‖ cosφ

v⊥ sinφ
. (23)

Hence the probability function in λ-space becomes

prob(λ1 < λ < λ2|φ, v‖, v⊥) =
γ1 − γ2

π

=
1

π

(

arccos
c(λ1

λ0

− 1)− v‖ cosφ

v⊥ sinφ
− arccos

c(λ2

λ0

− 1)− v‖ cosφ

v⊥ sinφ

)

. (24)

This is a simple approximation to the probability part of FIDA weight functions

neglecting Stark splitting and non-uniformity in pdfDα due to charge-exchange and

electron transition probabilities.
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Figure 3. Probability functions after ((a)-(d)) equation 24 and ((e)-(h)) equation 68

for various Doppler shifts and a narrow wavelength range λ2 − λ1 = 0.1 nm. The

projection angle is φ = 10◦. The colorbar shows the base ten logarithm of the

probability function log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

Figure 3((a)-(d)) show prob(λ1 < λ < λ2|φ, v‖, v⊥) for a narrow wavelength range of

0.1 nm at various Doppler shifts. Figure 3((e)-(h)) show the corresponding probabilities

prob(λ1 < λ < λ2|φ,E, p). The observable regions or interrogation regions are coloured

whereas the unobservable regions are white. The viewing angle is φ = 10◦. The

wavelength interval width λ2 − λ1 = 0.1 nm is comparable to the achievable spectral

resolution of FIDA measurements at ASDEX Upgrade and is typical for tomographic

measurements of 2D fast-ion velocity distribution functions [33]. The shape of the
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Figure 4. Probability functions after ((a)-(d)) equation 24 and ((e)-(h)) equation 68

for various projection angles φ and a narrow wavelength range λ2 − λ1 = 659.1 −
659.0 nm = 0.1 nm. The colorbar shows the base ten logarithm of the probability

function log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).
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Figure 5. Probability functions after ((a)-(d)) equation 24 and ((e)-(h)) equation 68

for various wavelength ranges λ2−λ1. The wavelength ranges are centered at 659.1 nm.

The projection angle is φ = 45◦. The colorbar shows the base ten logarithm of the

probability function log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

probability functions is triangular and symmetric in (v‖, v⊥)-coordinates, but the very

tip of the triangle is cut off by the v‖-axis as we will show more clearly in figure 5.

The opening angle of the triangles is 2φ = 20◦ as the two sides have inclination

angles of ±φ with respect to the v⊥-axis [12]. The location of the interrogation region

changes substantially with the magnitude of the Doppler shift. In figure 3((e)-(h)) we

show the same probability functions in (E, p)-coordinates since FIDA weight functions

are traditionally given in these coordinates. The probability functions have more

complicated shapes in (E, p)-coordinates. In figure 4 we vary the viewing angle φ. The

larger the viewing angle, the larger the opening angle (2φ) of the triangular regions in
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(v‖, v⊥)-space, and the lower the probabilities that a detected photon has a wavelength in

the particular wavelength range. These probabilities decrease for increasing projection

angle φ since the spectrum of projected velocities of the ion and therefore wavelengths

of the photons broaden according to equation 11 while the integral over the spectrum

is the same. Figure 5 shows probability functions for broader wavelength ranges up

to λ2 − λ1 = 1 nm typical for the traditional use of weight functions as sensitivity or

signal origin indicators. The inclinations of the sides of the triangle are not affected

by the larger wavelength range, but a larger tip of the triangle is now cut off by the

v‖-axis as figure 5d shows most clearly. The larger the wavelength range, the larger

the probabilities become since larger fractions of the ion orbits can produce Doppler

shifts within the wavelength limits. In the limit of wavelength ranges covering very

large red- and blue-shifts, the probability function becomes unity. Figures 3-5 show

that patterns in the velocity-space sensitivity of FIDA measurements are easier to spot

in (v‖, v⊥)-space where FIDA weight functions always have triangular shapes.

Equations 14, 15 and 16 transform the problem of finding a probability in λ-

space into the simpler problem of finding a probability in γ-space. We will use this

transformation when we account for Stark splitting and non-uniform charge-exchange

and electron transition probabilities in the next two sections.

4. Stark splitting

An electron Balmer alpha transition from the n = 3 to n = 2 state of a moving D-atom

in the magnetic field of a tokamak leads to light emission at fifteen distinct wavelengths

λl. This is referred to as Stark splitting since the splitting occurs due to the electric

field in the reference frame of the moving D-atom. Zeeman splitting is negligible in the

analysis of FIDA measurements as it is much weaker than Stark splitting [34]. In this

section we treat Stark splitting of the Dα-line. For this we find the integration limits

for the fifteen lines, find their probabilities and then sum over all possibilities. The

magnitude of the Stark splitting wavelength shift is proportional to the magnitude of

the electric field Ẽ in the reference frame of the neutral:

λl = λ0 + slẼ (25)

where l is a number from 1 to 15 corresponding to the 15 lines and the constants sl
are [45, 46]

sl=1,...,15 =
(

− 220.2,−165.2,−137.7,

− 110.2,−82.64,−55.1,−27.56, 0, 27.57, 55.15, 82.74, 110.3,

138.0, 165.6, 220.9
)

× 10−18m
2

V
. (26)

Lines 1, 4-6, 10-12, and 15 are so-called π-lines, and lines 2,3, 7-9, 13, and 14 are so-

called σ-lines. Line 8 is the unshifted wavelength with s8 = 0. The electric field Ẽ in

the reference frame of the neutral is

Ẽ = Ê+ v ×B. (27)
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where Ê is the electric field in the lab frame. In components this is








Ẽ⊥1

Ẽ⊥2

Ẽ‖









=









Ê⊥1

Ê⊥2

Ê‖









+









v⊥ cos γ

v⊥ sin γ

v‖









×









0

0

B









=









Ê⊥1 +Bv⊥ sin γ

Ê⊥2 −Bv⊥ cos γ

Ê‖









. (28)

The magnitude of the electric field in the frame of the neutral is

Ẽ =
√

Ê2 + v2⊥B
2 + 2v⊥B(Ê⊥1 sin γ − Ê⊥2 cos γ). (29)

Suppose we make a FIDA measurement at a particular wavelength λ. The photon could

have been emitted from any of the fifteen lines with wavelength λl that is then Doppler

shifted. Each of the fifteen lines has a particular Stark wavelength shift corresponding

to a particular Doppler shift with projected velocity ul to be observable at λ. The fifteen

Doppler shift conditions are

λ = λl

(

1 +
ul

c

)

(30)

which in combination with equation 25 yields

λ =
(

λ0 + slẼ
)

(

1 +
ul

c

)

. (31)

The projected velocity ul and the electric field in the frame of the particle Ẽ depend on

the gyroangle. Substitution of Ẽ using equation 29 and of ul using equation 14 shows

the relation between λ, φ, v⊥, v‖, γl and sl:

λ =
(

λ0 + sl

√

Ê2 + v2⊥B
2 + 2v⊥B(Ê⊥1 sin γl − Ê⊥2 cos γl)

)

×
(

1 +
1

c

(

v‖ cosφ+ v⊥ sinφ cos γl
)

)

. (32)

This relation describes not only the Doppler effect but also Stark splitting, the two

effects changing the wavelength of a detectable photon. It can be used to transform

integration limits in λ to γ-space where the integration is easier to do. Here we include

Stark splitting neglecting any electric field in the laboratory frame of reference. This

reveals the most important effects and is often a good approximation in a tokamak as

|Ê| ≪ |v ×B|, in particular for fast ions with large v⊥. In FIDASIM simulations this

approximation is usually made. If there is no electric field in the laboratory reference

frame, the electric field in the reference frame of the particle is

Ẽ = v⊥B, (33)

and the Stark shift is just proportional to v⊥:

λl = λ0 + slv⊥B. (34)

The functional dependence between λ and γ in equation 32 simplifies, and λ becomes

a cosine function of γ as in the relation between u and γ in equation 14. Equation 32
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becomes

λ = (λ0 + slv⊥B)
(

1 +
1

c

(

v‖ cosφ+ v⊥ sin φ cos γl
)

)

. (35)

Equation 35 implies an equation for the exact shape of FIDA weight functions neglecting

the electric field in the lab frame but accounting for Stark splitting as we will show in

section 7. The inverse function is

γl = arccos
c
(

λ
λ0+slv⊥B

− 1
)

− v‖ cos φ

v⊥ sin φ
, (36)

which gives a solution for 0 < γ < π. A second solution is given by equation 16. These

are integration limits in γl for each of the fifteen lines. The relative intensities Il(γ) of

π-lines and σ-lines depend on the gyroangle γ and can be written as [14]

σ : Il(γ) = Cl(1 + cos2(û, v̂× B̂)) = Cl(1 + sin2 φ sin2 γ) (37)

π : Il(γ) = Cl(1− cos2(û, v̂× B̂)) = Cl(1− sin2 φ sin2 γ) (38)

where û, v̂ and B̂ are unit vectors and the constants Cl are [14, 45, 47]

Cl=1,...,15 =
(

1, 18, 16, 1681, 2304, 729, 1936, 5490,

1936, 729, 2304, 1681, 16, 18, 1
)

. (39)

The expression of the projection of v̂× B̂ onto the line-of-sight vector û in terms of the

gyroangle γ is illustrated in figure 2. The probabilities prob(l|γ) that a detected photon

comes from line l given the gyroangle γ can be calculated from the relative intensities:

prob(l|γ) = Il(γ)
∑

Il(γ)
. (40)

Since
∑

Il(γ) = 18860 is a constant independent of γ, we can write the probabilities of

line l as

prob(l|γ) = Ĉl(1± sin2 φ sin2 γ) (41)

where the plus is used for the σ-lines and minus for the π-lines and

Ĉl =
Cl

∑15
n=1Cl

. (42)

The probability part of full FIDA weight functions accounting for Doppler and Stark

effects for arbitrary pdfDα can now be calculated according to

prob(λ1 < λ < λ2|φ, v‖, v⊥)

=
15
∑

l=1

(

∫ γ1,l

γ2,l

prob(l|γ)pdfDα
(γ | v‖, v⊥)dγ

+
∫ γ′

2,l

γ′
1,l

prob(l|γ)pdfDα
(γ | v‖, v⊥)dγ

)

. (43)

We will discuss the nature of the pdfDα in FIDA measurements in the following section.

Here we study basic effects by assuming a uniform pdfDα = 1/(2π) for which we can
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solve the integrals in equation 43 analytically:

prob(λ1 < λ < λ2|φ, v‖, v⊥)

=
15
∑

l=1

1

2π

(

∫ γ1,l

γ2,l
Ĉl(1± sin2 φ sin2 γ)dγ +

∫ γ′
2,l

γ′
1,l

Ĉl(1± sin2 φ sin2 γ)dγ

)

=
15
∑

l=1

Ĉl

(

γ1,l − γ2,l
π

± sin2 φ

2

(

γ1,l − γ2,l
π

− sin(2γ1,l)− sin(2γ2,l)

2π

))

. (44)

We leave the probability function in this form as substitution of the gyroangles using

equation 36 provides no new insights. The probability function is calculated as a

weighted sum over the fifteen Stark splitting lines. The first fraction accounts for fifteen

different probability functions for the uniform distribution where the integration limits

change for each Stark splitting line. The second term is a small correction due to the

changing relative intensities of the fifteen Stark splitting lines over the gyroangle. The

corrections due to σ-lines and π-lines have different signs and hence partly cancel. For

φ = 0 this correction disappears.
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Figure 6. The probability functions prob(λ1 < λ < λ2 | φ, v‖, v⊥) for pdfDα
= 1/(2π):

(a) without Stark splitting (equation 24), (b) with Stark splitting (equation 44). The

wavelength range is λ2 − λ1 = 0.1 nm. The magnetic field is 1.74 T. The projection

angle is φ = 30◦. The colorbar shows the base ten logarithm of the probability part of

the weight function log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

Figure 6 demonstrates the effects of Stark splitting for a uniform pdfDα and a

magnetic field of 1.74 T. The observation angle is φ = 30◦ and the wavelength range

is 658.0 - 658.1 nm in both figures. Stark splitting widens the interrogation region and

changes the probabilities. The effect of the fifteen Stark splitting lines shows most

clearly close to the boundary of the observable region where several local maxima

in the probability are formed. Since Stark splitting can be calculated accurately, it

actually does not limit the spectral resolution of FIDA measurements as was sometimes

asserted [3, 15, 16, 24, 48, 49] but rather just changes the velocity-space sensitivities.

5. Charge-exchange reaction and Dα-emission

The probability density pdfDα(γ | v‖, v⊥) is in fact not uniform as we assumed until now

but is a complicated function depending on the charge-exchange probabilities and the



On velocity-space sensitivity of FIDA spectroscopy 14

electron transition probabilities and hence ultimately on the particular NBI as well as on

the ion and electron temperatures and drift velocities. We hence find pdfDα(γ | v‖, v⊥)
and the FIDA intensity per unit ion density R(v‖, v⊥) irrespective of the detected

wavelength by numeric computation using FIDASIM. Here we discuss the nature of

these contributions.

The probability of a charge-exchange reaction between an ion and a neutral

depends on their relative velocity as well as on the particular charge-exchange reaction.

For an ion with given (v‖, v⊥), the probability density of a charge-exchange reaction

pdfCX(γ | v‖, v⊥) therefore depends on the gyroangle γ. Since FIDA light comes from a

fast neutral that has been created from a fast ion in a charge-exchange reaction, FIDA

does not sample the gyroangles of the ions uniformly, but favours those gyroangles for

which the ion velocity vectors are similar to those of the neutrals. The charge exchange

probability density depends on the distribution of injected neutrals and halo neutrals

and therefore on the particular NBI heating geometry.

The gyroangle probability densities that an ion at a particular gyroangle ultimately

leads to a detection of a Dα-photon are further influenced by the electron transition

probability densities pdfm→n(γ | v‖, v⊥) from energy level m to n. The n = 3 state can

be populated and depopulated from any other energy state whereas only the n = 3 → 2

leads to Dα-emission. These electron transition probabilities also depend on the velocity

due to collisions. The probability density pdfDα(γ | v‖, v⊥) is hence found numerically

using FIDASIM.
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(b) σvrel

Figure 7. Cross sections and reactivities σvrel of the charge-exchange reactions

directly resulting in an excited neutral in the n = 3 state. Here we regard reactions

of ions with donor neutrals in the first six excited states directly leading to an excited

neutral in the n = 3 state.

Before we proceed to such a full numeric computation of the relevant charge-

exchange reactions and electron transitions, we study essential features using a simplified

model. We consider the charge-exchange reaction

D+ +D(n) → D(n = 3) +D+ (45)
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where the donor neutral D(n) is in the nth excited state and the product neutral

D(n = 3) is in the n = 3 state and so can directly emit a Dα-photon. We emphasize

that the n = 3 state can also be populated via any electron transition. However, in our

simplified model we neglect electron transitions and consider only the direct population

of the n = 3 state via the charge-exchange reaction. The charge-exchange reaction cross

sections σ and the reactivities σvrel strongly depend on the relative velocity vrel which

is usually expressed as the relative energy

Erel =
1

2
mDv

2
rel. (46)

Figure 7 illustrates the cross sections σm and the reactivities σmvrel for charge-exchange

reactions with a donor neutral in state m directly resulting in an excited n = 3

neutral [14, 50–52]. In these reactions the donor neutral was in one of the first six

excited states. The reactivities strongly depend on the relative velocities which in turn

depend on the gyroangle. For simplicity, we treat a single source of injected neutrals

neglecting that in reality there are sources at full, half, and third injection energy. In

the coordinate system from figure 2 the velocity of the beam neutrals is

vb = vb,‖B̂+ vb,⊥1v̂⊥1 + vb,⊥2v̂⊥2 (47)

and the fast-ion velocity is given by equation 12. The relative velocity is then

vrel =
√

(vb,‖ − v‖)2 + (vb,⊥1 − v⊥ cos γ)2 + (vb,⊥2 − v⊥ sin γ)2. (48)

To find extremal values in vrel, we set

dvrel
dγ

= 0 (49)

and find that the gyroangle γ is then given by

tan γ =
vb,⊥2

vb,⊥1

. (50)

If the reactivity σmvrel were monotonic in the range of interest, the extrema of σmvrel
would correspond to the extrema of vrel. However, figure 7 shows that the reactivities

in particular of the charge exchange reactions 1 → 3 and 2 → 3 are not monotonic but

have maxima in the energy range of interest. Since the density of neutrals nneut,m=1 in

the first energy state is by far largest, this charge-exchange reaction often dominates.

The reaction rates per ion are given by

rm = σmvrelnneut,m (51)

In figure 8 we show these reaction rates for the six charge-exchange reactions for an

energy of E = 60 keV and pitches of p = ±0.5. The reaction rates strongly depend

on the gyroangle and have local maxima and minima. The dashed line shows the

minima of the relative velocities given by equation 50 which coincides well with the local

minima or maxima in the corresponding reaction rates. An extreme case is illustrated in

figure 8(a) where the relative velocity goes to zero for a particular gyroangle. Figure 8(b)

illustrates the reaction rates for velocity space coordinates far away from the donor

neutral velocities.
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Figure 8. Reaction rates σmvrelnneut,m as function of the gyroangle γ for an energy

of E = 60 keV and pitches of p = ±0.5. The donor neutral population is here from

the full injection energy peak of NBI Q3 while we neglect donor neutrals from half or

third injection energies. Here we show rates for reactions with these beam neutrals in

the first six excited states directly resulting in an excited neutral in the n = 3 state.
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Figure 9. Probability density functions pdfDα
at various positions in (E,p)-space

(energy, pitch). The functions have been computed with FIDASIM. The NBI Q3 has

an injection energy of 60 keV and an injection angle of about 120◦. The thin dashed

line is the uniform distribution assumed up to now.
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Figure 10. Comparison of pdfDα
as computed with FIDASIM with the cosine model

pdfDα
(equation 52) at various positions in velocity space. The thick dashed lines are

the model cosine, and the thin dashed line is the uniform distribution.

Up to now we have not considered electron transition processes. In the following we

calculate the full pdfDα with FIDASIM where we model the important charge-exchange

reactions and electron transitions as well as the beam geometry and energy distribution.

Figure 9 shows such numerically calculated pdfDα for a few energies and pitches. They

often coarsely resemble phase-shifted cosine curves if one disregards local minima and

maxima and Monte-Carlo noise. To study the effects of the non-uniform gyroangle

distributions by simple models, we assume a model pdf to take the form

pdfDα
(γ | v‖, v⊥) = 1/2π + a cos(γ + γ̄) (52)

where a < 1/2π is an amplitude and γ̄ is a phase shift. The integrals in equation 17 can

be solved assuming pdfDα from equation 52:

prob(λ1 < λ < λ2 | φ, v‖, v⊥)

=
∫ γ1

γ2
1/2π + a cos(γ + γ̄)dγ +

∫ γ′
2

γ′
1

1/2π + a cos(γ + γ̄)dγ

=
γ1 − γ2

π
+ 2a cos γ̄

(

sin γ1 − sin γ2
)

(53)

Again we leave the probability function in this form and do not substitute the gyroangles.

The first term in equation 53 also appears for the uniform pdf whereas the second term

accounts for cosine shape. It is proportional to the amplitude a and to the cosine of the

phase shift cos γ̄. We can also integrate our model pdf accounting for Stark splitting.

Equation 43 becomes

prob(λ1 < λ < λ2|φ, v‖, v⊥)

=
15
∑

l=1

(

∫ γ1,l

γ2,l

Ĉl

(

1± sin2 φ sin2 γ
)( 1

2π
+ a cos(γ + γ̄)

)

dγ

+
∫ γ′

2,l

γ′
1,l

Ĉl

(

1± sin2 φ sin2 γ
)( 1

2π
+ a cos(γ + γ̄)

)

dγ

)

=
15
∑

l=1

Ĉl

(

γ1,l − γ2,l
π

± sin2 φ

2

(

γ1,l − γ2,l
π

− sin(2γ1,l)− sin(2γ2,l)

2π

)
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+ 2a cos γ̄

(

sin γ1,l − sin γ2,l ±
sin2 φ

3

(

sin3 γ1,l − sin3 γ2,l
)

))

. (54)

Equation 54 contains all terms of equation 44 as well as the term accounting for the

cosine shape from equation 53. Additionally, another correction term arises accounting

for changing intensities of the Stark splitting lines and varying amplitude due to the

cosine function. This term has again different signs for σ-lines and π-lines and disappears

for φ = 0.
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Figure 11. The probability functions prob(λ1 < λ < λ2 | φ, v‖, v⊥) for pdfDα
given

by equation 52. (a) without Stark splitting (equation 53), (b) with Stark splitting

(equation 54). The wavelength range is λ2 − λ1 = 0.1 nm. The magnetic field is

1.74 T. The projection angle is φ = 30◦. The colorbar shows the base ten logarithm

of the probability part of the weight function log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

As already mentioned, the phase shift γ̄ in equation 52 can be found approximately

from geometric considerations. Further, we construct a model for the amplitude so that

it increases with energy and decreases with the magnitude of the pitch as motivated by

figure 9 where these trends appear:

a =
E

E0
(1− p2) =

v2⊥
v2⊥0

. (55)

This model for the amplitude has E0 as the only free parameter. It has units of energy

to non-dimensionalize the energy coordinate. The amplitude a of the cosine function

in equation 52 is inversely proportional to E0. For E0 = 1 MeV the amplitudes of

the probability density functions roughly correspond to the FIDASIM calculation over

the relevant energy range up to 90 keV as we show in figure 10. Figure 11 shows that

the typical large-scale cosine-like shape of pdfDα leads to lopsided probabilities. In this

particular case ions close to the right side of the triangular weight functions have higher

probabilities to emit light in the particular wavelength range than those close to the

left side of the triangle. The phase angle γ̄ determines how lopsided the probability

function becomes. In figure 11(a) we show one of the extreme cases as cos(γ̄) = 1. For

cos(γ̄) = 0 the probability function is symmetric and the same as that for the uniform

distribution. Figure 11(b) shows the probability function for the model pdfDα given by

equation 52 and accounting for Stark splitting. The effect of Stark splitting is similar

to that observed for the uniform pdfDα . Lastly, we note that any arbitrary pdfDα can
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be expanded into a Fourier series and then analytical, smooth FIDA weight functions

could be constructed from the Fourier components which each can be integrated as in

equation 54.

6. Full FIDA weight functions

Substitution of equation 43 into equation 6 gives an analytic expression for full FIDA

weight functions accounting for Doppler and Stark effects and allowing for arbitrary

pdfDα:

w(λ1, λ2, φ, v‖, v⊥) = R(v‖, v⊥)

×
15
∑

l=1

(

∫ γ1,l

γ2,l

prob(l|γ)pdfDα
(γ | v‖, v⊥)dγ

+
∫ γ′

2,l

γ′
1,l

prob(l|γ)pdfDα
(γ | v‖, v⊥)dγ

)

. (56)

Equation 56 is general whereas the assumptions of the FIDASIM code are used to

calculate R and pdfDα [14, 34]. In particular, the calculation of the weight functions

assumes that the FIDA emission comes from a small volume in configuration space.

Practically, R and pdfDα are calculated from the distribution function fDα(γ | v‖, v⊥)
of the FIDA intensity per unit ion density over γ which we calculate numerically using

FIDASIM. Then

R(v‖, v⊥) =
∫ 2π

0
fDα(γ | v‖, v⊥)dγ, (57)

pdfDα(γ | v‖, v⊥) =
fDα(γ | v‖, v⊥)

R(v‖, v⊥)
. (58)

We prefer not to substitute equation 58 into equation 56 to emphasize that R is a

factor common to any weight function with any wavelength range. We compare full

FIDA weight functions as computed with our formalism with the traditional weight

function as computed with FIDASIM in figure 12. The two approaches give the same

result within small and controllable discretization errors and Monte Carlo noise from the

sampling of the neutral beam particles in FIDASIM below 5%. This shows that our new

formalism is consistent with the traditional FIDASIM computation as expected since the

physics assumptions are the same. However, our approach provides additional insight

into functional dependencies not revealed by the traditional brute-force computation.

It also leads to faster computations if weight functions in several wavelength ranges

are to be computed since the time-consuming collisional-radiative model only has to

be evaluated once to find R and pdfDα, and weight functions for any wavelength range

can then be computed rapidly using equation 56. Additionally, we compare these full

FIDA weight functions based on numerically computed pdfDα using FIDASIM with full

weight functions given by the uniform pdfDα and the cosine pdfDα which match the full

computation to within 20%.
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Figure 12. Full FIDA weight functions as computed with (a) traditional FIDASIM,

(b) equation 56 for numerically computed pdfDα
using FIDASIM, (c) equation 56 for

the cosine model pdfDα
, (d) equation 56 for the uniform model pdfDα

. The projection

angle is φ = 155◦. The wavelength range is 660-661 nm. The magnetic field is 1.74 T.

7. Boundaries of FIDA weight functions

Often it is useful to know the velocity-space interrogation regions of FIDA

measurements. Until now these observable regions in velocity space had to be found by

numerical simulations with the FIDASIM code. Here we show that these velocity-space

interrogation regions are in fact completely determined by a simple analytic expression

accounting for the Doppler shift and Stark splitting. The boundaries of FIDA weight

functions are found by solving equation 35 for v‖ and setting cos γ = ±1 and l = 1

or l = 15 which gives the largest possible Doppler shift and Stark splitting wavelength

shift, respectively. The boundaries for arbitrary l are

v‖ = ±v⊥ tanφ+
c

cosφ

(

λ

λ0 + slv⊥B
− 1

)

. (59)
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This is a hyperbolic equation. Nevertheless, for v⊥ ≪ c we have slv⊥B ≪ λ0, and we

can expand the right hand side in a Taylor series:

v‖ ≈
(

± tanφ− c

cosφ

λ

λ0

slB

λ0

)

v⊥ +
c

cos φ

λ− λ0

λ0

. (60)

For v⊥ ≪ c the FIDA weight functions are thus approximately bounded by straight lines

in (v‖, v⊥)-coordinates. The v‖-intercept is
c

cosφ
λ−λ0

λ0

and the slope is given by the term in

the bracket. In figure 13 we compare the outer boundary given by equation 60 with the

corresponding FIDA weight function in (E,p)-coordinates. The outermost boundaries

are found for l = 1 and l = 15. However, since the outermost three lines on each side

correspond to Stark lines with tiny intensities (see equation 39), the effective boundaries

of the velocity-space interrogation region could be considered to be defined by l = 4

and l = 12 as indicated by dashed lines. Stark splitting has always been neglected in

previous work where boundaries of weight functions or minimum energies below which

the weight function is zero have been discussed [2, 3, 15, 16, 18, 19, 22, 28]. Figure 13

demonstrates that the effect of Stark splitting can be substantial as it decreases the

minimum energy below which the weight function is zero by 10-20 keV depending on

whether we define the boundary by l = 1, 15 or by l = 4, 12. In Figure 13 the thick lines

correspond to previous models with no Stark splitting (here l = 8). The outermost lines

set the interrogation region accounting for Stark splitting ( l = 1, 15), and dashed lines

correspond to the Stark lines l = 4, 12.

0 50 100
−1

−0.5

0

0.5

1

Energy [keV]

P
itc

h 
[−

]

−6

−5

−4

−3

−2

−1

0

Figure 13. Boundaries of a FIDA weight function compared with the corresponding

weight function for φ = 80◦, 662-663 nm, and B = 1.74 T. For each of the 15 Stark

splitting lines there is a boundary shown by thin black lines. The thick black line

denotes l = 8 (no Stark shift). The thick dashed black lines denote l = 4 and l = 12.

Note that here we show probabilities down to to 10−6.
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8. Discussion

8.1. Fast ion studies

ASDEX Upgrade has five FIDA views. Correctly scaled FIDA weight functions, as

we present here, allow measurements of 2D fast-ion velocity distribution functions by

tomographic inversion [33]. This will allow velocity-space studies of fast-ion distributions

which are generated by up to 20 MW of neutral beam injection power and 6 MW of

ion cyclotron heating power [53–55]. Moreover, weight functions are not specific to

FIDA and have also been given for collective Thomson scattering [12], neutron count

rate measurements [2], neutral particle analyzers [2], fast-ion loss detectors [56], neutron

spectroscopy [57, 58] and beam emission spectroscopy [59]. If weight functions for the

other diagnostics are correctly scaled, as those for FIDA and CTS [12], the fast-ion

diagnostics can be combined in joint measurements of 2D fast-ion velocity distribution

functions using the available diagnostics [32]. For example, ASDEX Upgrade is equipped

with fast-ion loss detectors (FILD) [26, 60, 61], fast-ion Dα (FIDA) [13, 27, 29, 33],

collective Thomson scattering (CTS) [31,32,37–39,62,63], neutron energy spectrometry

[64, 65], neutral particle analyzers (NPA) [66, 67], and γ-ray spectrometry [68].

8.2. CER spectroscopy of the bulk ions

Weight functions describing FIDA diagnostics will also describe Dα-based CER

spectroscopy of the bulk deuterium ions [6–11] and would then also be applicable to

CER spectroscopy based on impurity species [4, 5] if the path of the emitter from the

charge-exchange reaction to the photon emission does not curve significantly. Hence we

could also show velocity-space interrogation regions of particular wavelength intervals

in CER spectroscopy with our approach, estimate where in velocity space most signal

comes for a given ion velocity distribution function, calculate spectra, and – perhaps the

most interesting application – calculate velocity-space tomographies of bulk-ion velocity

distribution functions of the emitting species. A temperature, density, and drift parallel

to the magnetic field could be found by fitting a 2D Maxwellian to the tomography

of the ion distribution functions, and this could provide an alternative to standard

methods. This method would be even more interesting if parallel and perpendicular ion

temperatures are discrepant as sometimes observed in MAST [69] or JET [70] or if the

ions do not have a Maxwellian distribution.

9. Conclusions

The velocity-space sensitivity of FIDA measurements can be described by weight

functions. We derive correctly scaled expressions for FIDA weight functions accounting

for the Doppler shift, Stark splitting, and the charge-exchange and the electron

transition probabilities. Our approach provides insight not revealed by the traditional

numerical computation of weight functions implemented in the FIDASIM code. By
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using simple analytic models we show how these physical effects contribute to the

velocity-space sensitivities of FIDA measurements. The Doppler shift determines an

approximate shape of the observable region in (v‖, v⊥)-space which is triangular and

mirror symmetric. Stark splitting broadens this triangular observable region whereas

the charge-exchange and electron transition probabilities do not change the boundaries

of FIDA weight functions separating the observable region from the unobservable

region in velocity-space. Our approach implies exact analytic expressions for these

boundaries that take Stark splitting into account and therefore differ by up to 10-

20 keV in (energy, pitch)-space from similar expressions in previous work. We show

that Stark splitting changes the sensitivity of the measurement, but this does not

limit the achievable spectral resolution of FIDA measurements as has sometimes been

asserted [3,15,16,24,48,49]. Weight functions as we deduce here can be used to rapidly

compute synthetic FIDA spectra from a 2D velocity distribution function. This lays the

groundwork for the solution of the inverse problem to determine 2D velocity distribution

functions from FIDA measurements. Lastly, our methods are immediately applicable to

charge-exchange recombination spectroscopy measurements of Dα-light from the bulk

deuterium population to determine their temperature and drift velocity as well as any

anisotropy.
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Appendix 1

Here we give key expressions in the wide-spread (E, p)-coordinates (Energy, pitch) that

are used in the TRANSP code. They can be obtained by substituting

v‖ = −p
√

2E/m (61)

v⊥ =
√

(1− p2)2E/m (62)

into the corresponding expressions in (v‖, v⊥)-coordinates. Weight functions in (E, p)-

coordinates are defined as

I(λ1, λ2, φ) =
∫ ∫ ∫

w(λ1, λ2, φ, E, p)f(E, p)dEdp. (63)

They can be written as

w(λ1, λ2, φ, E, p) = R(E, p)prob(λ1 < λ < λ2|φ,E, p). (64)

The projected velocity u along the line-of-sight is

u =
(

− p cosφ+
√

1− p2 sinφ cos γ
)
√

2E/m. (65)
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If there is no static electric field, the observed wavelength as function of gyroangle

becomes

λ =
(

λ0 + slB
√

(1− p2)2E/m
)

×
(

1 +
1

c

(

− p cosφ+
√

1− p2 sinφ cos γl
)
√

2E/m

)

. (66)

and the inverse function is

γl = arccos

c√
2E/m

(

λ

λ0+slB
√

(1−p2)2E/m
− 1

)

+ p cosφ
√
1− p2 sin φ

. (67)

The probability function for a uniform gyroangle distribution and no Stark splitting

becomes

prob(λ1 < λ < λ2|φ,E, p)

=
1

π

(

arccos

c√
2E/m

(λ1

λ0

− 1) + p cosφ
√
1− p2 sinφ

− arccos

c√
2E/m

(λ2

λ0

− 1) + p cosφ
√
1− p2 sinφ

)

(68)

and the pdf is expressed in (E, p) is

pdf(λ, φ, E, p) =
1

π
√

2E/m(1− p2) sinφ

√

√

√

√1−
( c√

2E/m
(λ1
λ0

−1)+p cosφ
√

1−p2 sinφ

)2

. (69)

For an arbitrary gyroangle distribution and no Stark splitting the probability function

becomes

prob(λ1 < λ < λ2|φ,E, p)

=
∫ γ1,l

γ2,l
pdfDα(γ | E, p)dγ +

∫ γ′
2,l

γ′
1,l

pdfDα(γ | E, p)dγ. (70)

The general expression of the probability function for an arbitrary gyroangle distribution

and accounting for Stark splitting is

prob(λ1 < λ < λ2|φ,E, p)

=
15
∑

l=1

(

∫ γ1,l

γ2,l

prob(l|γ)pdfDα
(γ | E, p)dγ

+
∫ γ′

2,l

γ′
1,l

prob(l|γ)pdfDα
(γ | E, p)dγ

)

. (71)

The general expression of FIDA weight functions is

w(λ1, λ2, φ, E, p) = R(E, p)

×
15
∑

l=1

(

∫ γ1,l

γ2,l

prob(l|γ)pdfDα
(γ | E, p)dγ

+
∫ γ′

2,l

γ′
1,l

prob(l|γ)pdfDα
(γ | E, p)dγ

)

(72)
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and their boundaries are given by

E =
mc2(λ− λ0)

2

2(1− p2)×
(

λ0 cosφ
(

± tanφ− p+ cλslB
λ2

0
cosφ

))2 . (73)
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