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Abstract. We measure the deuterium density, the parallel drift velocity, and parallel

and perpendicular temperatures (T‖, T⊥) in non-Maxwellian plasmas at ASDEX

Upgrade. This is done by taking moments of the ion velocity distribution function

measured by tomographic inversion of five simultaneously acquired spectra of Dα-

light. Alternatively, we fit the spectra using a bi-Maxwellian distribution function. The

measured kinetic temperatures (T‖ = 9 keV, T⊥ = 11 keV) reveal the anisotropy of the

plasma and are substantially higher than the measured boron temperature (7 keV).

The Maxwellian deuterium temperature computed with TRANSP (6 keV) is not

uniquely measurable due to the fast ions. Nevertheless, simulated kinetic temperatures

accounting for fast ions based on TRANSP (T‖ = 8.3 keV, T⊥ = 10.4 keV) are in

excellent agreement with the measurements. Similarly, the Maxwellian deuterium

drift velocity computed with TRANSP (300 km/s) is not uniquely measurable,

but the simulated kinetic drift velocity accounting for fast ions agrees with the

measurements (400 km/s) and is substantially larger than the measured boron drift

velocity (270 km/s). We further find that ion cyclotron resonance heating elevates T‖
and T⊥ each by 2 keV without evidence for preferential heating in the Dα spectra.

Lastly, we derive an expression for the 1D projection of an arbitrarily drifting bi-

Maxwellian onto a diagnostic line-of-sight.

‡ See [1]
§ See [2]
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1. Introduction

Fusion plasmas are often described by just a few parameters summarizing their basic

properties. The ion populations are described by the lowest moments of their velocity

distribution functions: the density n, the drift velocity vd (or equivalently the so-called

rotation), the temperature T , and the pressure p. Anisotropic plasmas are described

by the temperatures T‖ and T⊥ and the pressures p‖ and p⊥ where the indices refer to

directions with respect to the magnetic field.

However, the properties of the main-ion species are almost never measured

directly, but are estimated from measurements of impurity ions and calculations.

For example, deuterium temperatures and drift velocities are routinely estimated

from the corresponding impurity parameters which are measured by charge-exchange

recombination (CER) spectroscopy. A non-exhaustive list of examples of such

measurements on a variety of tokamaks is found in references [3–23]. Deuterium

temperatures and drift velocities are directly measured by Dα-based CER spectroscopy

[24–34] and collective Thomson scattering (CTS) [35–44]. Neutron emission and gamma-

ray spectroscopy also allow temperature measurements in high-performance plasmas

[45]. A difficulty of main-ion measurements is that the associated distribution function

is often highly non-Maxwellian and anisotropic due to the intense auxiliary plasma

heating. The non-Maxwellian functional form and the anisotropy has up to now been

dealt with by splitting the total population into a thermal, Maxwellian population and

an energetic, non-Maxwellian population in analogy to the simulated populations in the

widespread TRANSP code [46] (figure 1). In TRANSP fast ions are usually assumed

to be part of the energetic population down to energies of E = 1.5 Ti where Ti is

the Maxwellian ion temperature. The fast ions with higher energies are tracked in the

NUBEAM module [46], and when they have slowed down to an energy of 1.5 Ti, they

are removed from NUBEAM and added to the thermal population.

If the deviation from a Maxwellian is small, it is argued that the energetic-ion

population is negligible [38–41]. In this case the total deuterium population is modelled

as a thermal, Maxwellian population which is found as the best-fit Maxwellian to the

total distribution function illustrated in figure 1(c). If the deviation from a Maxwellian is

large, a common approach is to allow for the existence of an energetic, non-Maxwellian

population in addition to a thermal population in analogy to TRANSP [28–31]. In

this case one finds the best-fit Maxwellian to the distribution function illustrated in

figure 1(a). However, as individual deuterium ions from the ’thermal’ (figure 1(a)) and

the ’energetic’ (figure 1(b)) populations are indistinguishable, only the total main-ion

population (figure 1(c)) can be measured experimentally. We will show that the artificial

splitting into thermal and non-thermal populations leads to ambiguity of the inferred

bulk ion parameters. We will drop this artificial splitting altogether and consider one

total deuterium ion population, and our goal will be to measure its lowest moments,

the density, the drift velocity, and the parallel and perpendicular temperatures and

pressures.
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(a) (b) (c)

Figure 1. TRANSP splits the deuterium population into (a) a drifting Maxwellian

and (b) a fast-ion velocity distribution function computed in the NUBEAM module

in [1016/(keV m3)]. (c) The modelled complete deuterium velocity distribution is the

sum of both populations. The parameters here are taken from a TRANSP simulation

of ASDEX Upgrade [47] discharge #32323 at 1711 ms in the plasma center just before

a sawtooth crash. The NBI source is S3. The Maxwellian is described by T = 6 keV,

nth = 2 × 1019 m−3 and vd = 3 × 105 m/s. The density of the fast-ion population in

(b) is nf = 6× 1018 m−3.

Here we demonstrate two new formalisms that accomplish this and account for

the anisotropy and the deviation from a Maxwellian of the deuterium population. To

this end, we have acquired five spectra of Dα-light originating from the same location

simultaneously by active Dα-CER spectroscopy using five different lines-of-sight [48–50].

In our first approach we find the parallel-drifting bi-Maxwellian distribution function

that produces the best fit to the five spectra. While this approach in principle allows

measurements of the bi-Maxwellian parameters n, vd‖, T‖, T⊥, p‖, p⊥ in plasmas that have

a bi-Maxwellian distribution function, it is inaccurate for populations that are not

Maxwellian or bi-Maxwellian as is often the case at ASDEX Upgrade. Nevertheless, this

approach is still worth pursuing as it may be the only option for anisotropic temperature

measurements if only two or three simultaneously acquired active CER measurements

are available. Further, this approach has advantages compared with traditional CER

spectroscopy based on one spectrum since measurements from several detectors are used

simultaneously. This approach is hence a form of integrated data analysis [51].

In our second approach, we will not assume any functional form of the distribution

function but instead measure the total deuterium distribution function by velocity-

space tomography which is becoming an increasingly widespread tool to analyze fast-ion

measurements [48–64]. We then calculate n, vd‖, T‖, T⊥, p‖ and p⊥ as the lowest moments

of the total deuterium distribution function. These kinetic parameters are unique and

well-defined for any distribution function in tokamak plasmas, and they reduce to the

usual Maxwellian parameters if the distribution is Maxwellian.

This paper is organized as follows. Section 2 briefly reviews coordinate systems

frequently used to measure drift velocities and ion distribution functions. We calculate

the projection of a bi-Maxwellian distribution function onto a diagnostic line-of-sight

in section 3, illustrating that perpendicular as well as parallel temperatures can
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be measured if spectroscopic data from two or more intersecting lines-of-sight are

available. In section 4 we discuss measurements of the kinetic parallel and perpendicular

temperatures and pressures, drift velocities and densities as moments of the velocity

distribution function using velocity-space tomography. Section 5 gives an overview of the

two discharges that we analyze. Sections 6 and 7 discuss difficulties one encounters when

trying to fit non-Maxwellian distribution functions with Maxwellians and bi-Maxwellians

in 1D and 2D, respectively. Section 8 presents measurement results obtained by fitting

spectra with bi-Maxwellians and by velocity-space tomography. Finally, in section 9

conclusions are drawn.

2. Bi-Maxwellians and drift velocities in common coordinate systems

In this section we briefly define the various coordinate systems that are customary

in descriptions of distribution functions and drift velocities in a tokamak. The drift

velocities are often split into components in the toroidal and poloidal directions referring

to a drift parallel to the magnetic axis and a drift azimuthally around it, respectively.

As we analyze measurements in the plasma center in a high-power, high-torque plasma,

the poloidal drift is not important compared with the toroidal drift. Often these drift

velocities are presented in terms of so-called toroidal and poloidal rotations in units of

[Hz] or [rad/s]. However, our formalism to calculate drift velocities and distribution

functions is simplest in coordinates referring to parallel and perpendicular directions

with respect to the local magnetic field vector due to the rotational symmetry associated

with the rapid gyration of the ions. Vectors in these directions can easily be transformed

to vectors in toroidal and poloidal directions since the local magnetic field vectors are

known.

The anisotropic temperatures and pressures are most easily understood in (v‖, v⊥)-

space which can be represented as a slice through the full 3D function f 3D
v (v‖, v⊥) with

implied rotational symmetry or as a true 2D function f 2D
v (v‖, v⊥) with no implied third

direction. These two functions are related by [52]

f 2D
v (v‖, v⊥) = 2πv⊥f

3D
v (v‖, v⊥) (1)

where the factor v⊥ is the Jacobian of the transformation from Cartesian to cylindrical

coordinates and 2π is the integral over the ignorable gyroangle. The energy E and

pitch ξ of a particle are another customary set of 2D coordinates. The 2D coordinate

transformations between f 2D
v (v‖, v⊥) and f(E, ξ) are

E =
1

2
m
(
v2‖ + v2⊥

)
v‖ = ξ

√
2E

m

ξ =
v‖√

v2‖ + v2⊥

v⊥ =
√

1− ξ2
√

2E

m
(2)

with the Jacobians

Jv→E,ξ =
1

m
√

1− ξ2
JE,ξ→v =

mv⊥√
v2‖ + v2⊥

. (3)
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A parallel-drifting bi-Maxwellian velocity distribution function in a magnetized plasma

with the ignorable gyroangle γ in 3D (v‖, v⊥)-space is

f 3D
v (v‖, v⊥) = n

(m
2π

)3/2 1

T⊥T
1/2
‖

exp

(
−
m(v‖ − vd‖)2

2T‖
− mv2⊥

2T⊥

)
. (4)

A Maxwellian with perpendicular drift cannot be represented using the two coordinates

(v‖, v⊥) due to the rotational symmetry. A perpendicular drift velocity term of the form

(v⊥−vd⊥)2 would represent a ring distribution rather than a drifting Maxwellian due to

the rotational symmetry. Therefore such a term is not included. It is possible to allow

perpendicular drifts using the formalism shown in section 3 where one describes the

rotation symmetric bi-Maxwellian in a coordinate system with a relative perpendicular

velocity. In high-power, high-torque plasmas in ASDEX Upgrade, the perpendicular

drift can be assumed to be small compared with the parallel drift in the plasma center

where the pitch of the magnetic field lines is small. Therefore the 2D bi-Maxwellian is a

good model that is often used. In 2D (v‖, v⊥)-space it becomes according to equation 1

f 2D
v (v‖, v⊥) = n

m3/2

(2π)1/2
v⊥

T⊥T
1/2
‖

exp

(
−
m(v‖ − vd‖)2

2T‖
− mv2⊥

2T⊥

)
, (5)

and in 2D (E, ξ)-space according to equations 2 and 3

f(E, ξ) = n

(
E

πT 2
⊥T‖

)1/2

exp

(
−
ξ2E + 1

2
mv2d‖ − vd‖ξ

√
2mE

T‖
− (1− ξ2)E

T⊥

)
. (6)

The standard drifting isotropic Maxwellians in these coordinate systems are obtained

by setting T‖ = T⊥ = T in equations 4 to 6.

3. Projection of a bi-Maxwellian with arbitrary drift

For many diagnostics the projection of the distribution function onto a particular

direction plays a special role. For example, the Doppler shift ∆λ in CER spectroscopy

measurements is given by

∆λ = λ0
u

c
(7)

where λ0 is the rest frame wavelength of the emitted light, u is the velocity component

along the line-of-sight and c is the speed of light [65]. Blue- and red-shift correspond to

negative and positive u, respectively. Similarly, the frequency shift of scattered radiation

ωδ in CTS measurements is

ωδ = u|kδ| (8)

where kδ is the difference between the wave vectors of received and incident radiation

[66]. The velocity distribution function projected onto the line-of-sight for CER

spectroscopy and onto kδ for CTS, g(u), strongly influences the widths of the measured

spectra. Here we derive an expression for the 1D projection of a bi-Maxwellian

with arbitrary parallel and perpendicular drifts. This expression provides insight into
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temperature and drift velocity measurements in idealized bi-Maxwellian plasmas. The

line-of-sight velocity component of a particle with velocities (v‖, v⊥) and a perpendicular

drift velocity vd⊥ is

u = vd⊥ cos β + v‖ cosφ+ v⊥ sinφ cos γ (9)

where φ is the angle between the magnetic field and the line-of-sight and β is the

angle between the perpendicular drift velocity and the line-of-sight. Compared with

the previously used projection equation [52], we here allow for a perpendicular drift

velocity in analogy to the treatment of systematic Doppler shifts due to relative drifts

of astrophysical rotating accretion discs to Earth [57]. v‖ is the parallel drift which is

already handled by the existing formalism [52, 67]. The projection of the 3D function

onto the line-of-sight can be written using the Dirac δ-function

g(u, φ) =

∫ ∫ ∫
f 3D(v‖, v⊥)δ(v‖ cosφ+ v⊥ sinφ cos γ − (u− vd⊥ cos β))v⊥dv‖dv⊥dγ

(10)

which can be interpreted as the projection onto the transformed coordinate

u′ = u− vd⊥ cos β. (11)

Integration over γ gives for φ 6= 0 [52]

g(u, φ) =

∫ ∞
−∞

∫ ∞
(u′−v‖ cosφ)/ sinφ

2f 3D(v‖, v⊥)

sinφ

√
1−

(
u′−v‖ cosφ

v⊥ sinφ

)2dv⊥dv‖. (12)

The lower integration limit (u′ − v‖ cosφ)/ sinφ in v⊥ describes the border between the

observable and unobservable velocity-space regions [52, 67]. Unobservable regions can

be identified here by a negative radicant in equation 12. After substituting equation 4

and expanding the fraction by v⊥, we get

g(u, φ) =
2n

sinφ

(m
2π

)3/2 1

T⊥T
1/2
‖

(13)

×
∫ ∞
−∞

∫ ∞
u′/ sinφ−v‖ cotφ

v⊥ exp
(
−mv2⊥

2T⊥

)
√
v2⊥ −

(
u′−v‖ cosφ

sinφ

)2dv⊥ exp

(
−
m(v‖ − vd‖)2

2T‖

)
dv‖.

After integration over v⊥,

g(u, φ) =
n

sinφ

(m
2π

) 1

(T⊥T‖)1/2

∫ ∞
−∞

exp

−m
(
u′−v‖ cosφ

sinφ

)2
2T⊥

−
m(v‖ − vd‖)2

2T‖

 dv‖,

(14)

and over v‖,

g(u, φ) =
n

sinφ

(m
2π

) 1

(T⊥T‖)1/2

(
2π

m( 1
T‖

+ 1
T⊥

cot2 φ)

)1/2
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× exp

(
−

2m2(u′ − vd‖ cosφ)2

4T⊥T‖m/2
(
1/T⊥ + 1/T‖ + (1/T⊥ − 1/T‖) cos(2φ)

)) , (15)

and after straightforward simplification and transformation back to u, we find an

intuitive equation for the projection of the arbitrarily drifting bi-Maxwellian distribution

function onto the line-of-sight:

g(u, φ) = n

(
m

2π
(
T⊥ sin2 φ+ T‖ cos2 φ

))1/2

exp

(
−
m
(
u− vd‖ cosφ− vd⊥ cos β

)2
2
(
T‖ cos2 φ+ T⊥ sin2 φ

) )
.

(16)

Equation 16 is a 1D Maxwellian with the effective temperature in the u-coordinate along

the line-of-sight

Tu = T⊥ sin2 φ+ T‖ cos2 φ (17)

and the u-drift

ud = vd‖ cosφ+ vd⊥ cos β. (18)

It connects the drifting 1D Maxwellian often used in temperature measurements to an

underlying group of 2D arbitrarily drifting bi-Maxwellians with the same 1D projection.

The angle between the line-of-sight and the magnetic field is always known. If the

direction of the perpendicular drift velocity is known, we also know β for each view.

If at least two simultaneous measurements at different viewing angles on the same

measurement volume are available and the perpendicular drift direction is known,

we could find all parameters of a drifting bi-Maxwellian, assuming that the velocity

distribution function has a bi-Maxwellian shape. This is accomplished by measuring Tu
and ud for each view (at least two views) and inverting equation 17 to obtain T‖ and T⊥
and equation 18 to obtain vd‖ and vd⊥. We illustrate this possibility by considering the

two extreme angles φ = 0◦ and φ = 90◦ leading to a particularly simple inversion. For

φ = 90◦ the parallel temperature and the parallel drift velocity drop out. The width

of the Maxwellian is then given by the perpendicular temperature and the drift is the

projected perpendicular drift:

g(u, φ = 90◦) = n

(
m

2πT⊥

)1/2

exp

(
−m(u− vd⊥ cos β)2

2T⊥

)
. (19)

For φ→ 0 the perpendicular temperature and the perpendicular drift velocity drop out

(as β → 90◦). The width is given by the parallel temperature. The observed u-drift is

vd‖. The special case φ = 0 gives the same results as the limit φ→ 0 of equation 16 (we

omit the analogous derivation for brevity):

g(u, φ = 0◦) = n

(
m

2πT‖

)1/2

exp

(
−
m(u− vd‖)2

2T‖

)
. (20)

For T‖ = T⊥ ≡ T , φ drops out of the temperature terms, and we obtain a standard

drifting Maxwellian with the same temperature for any φ, but with u-drift velocities

that do depend on the direction of the line-of-sight:

g(u, φ) = n
( m

2πT

)1/2
exp

(
−
m(u− vd‖ cosφ− vd⊥ cos β)2

2T

)
. (21)
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4. Kinetic temperatures, drift velocities and densities for arbitrary

distribution functions

This section provides definitions of the kinetic parallel and perpendicular temperatures,

drift velocities and densities and briefly defines how to compute them from an

arbitrary distribution function. At ASDEX Upgrade five active Dα-CER spectra are

simultaneously measured using five different lines-of-sight [48]. These intersect the

beam path of NBI source S3 in the same region in the plasma. Each line-of-sight

forms a different angle with the local magnetic field vector, so that different parts of

velocity space are observed [67]. For such a setup we can drop the assumption that

the 1D projections of the distribution function are Maxwellian. Instead we can find

the complete distribution function by velocity-space tomography which provides the

best regularized fit to the measurement data. We can then summarize some of the

rich information contained in the fitted distribution function by computing its lowest

moments. In this section we briefly define these. The zeroth moment is the density:

n =

∫ ∞
−∞

f(v)dv =

∫ ∞
0

∫ ∞
−∞

f(v‖, v⊥)dv‖dv⊥ =

∫ 1

−1

∫ ∞
0

f(E, ξ)dEdξ.(22)

The first moment is the drift velocity:

vd =
1

n

∫ ∞
−∞

vf(v)dv. (23)

The perpendicular drift is presently neglected in the tomographic inversion. The parallel

drift velocity is

vd‖ =
1

n

∫ ∞
0

∫ ∞
−∞

v‖f(v‖, v⊥)dv‖dv⊥ =
1

n

∫ 1

−1

∫ ∞
0

ξ

√
2E

m
f(E, ξ)dEdξ.(24)

The second moment is known as the pressure tensor

P = m

∫ ∞
−∞

(v− vd)(v− vd)f(v)dv (25)

which can, for rotational symmetry about the magnetic field, be written as

P =

 p⊥ 0 0

0 p⊥ 0

0 0 p‖

 (26)

where the parallel and perpendicular kinetic pressures are

p‖ = m

∫ ∞
0

∫ ∞
−∞

(
v‖ − vd‖

)2
f(v‖, v⊥)dv‖dv⊥

= m

∫ 1

−1

∫ ∞
0

(
ξ

√
2E

m
− vd‖

)2

f(E, ξ)dEdξ, (27)

p⊥ =
m

2

∫ ∞
0

∫ ∞
−∞

v2⊥f(v‖, v⊥)dv‖dv⊥

=

∫ 1

−1

∫ ∞
0

(1− ξ2)Ef(E, ξ)dEdξ. (28)
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The total kinetic pressure is defined as one third of the trace of P:

p =
1

3
tr(P) =

1

3

(
p‖ + 2p⊥

)
=

2

3

∫ ∞
0

∫ ∞
−∞

(
1

2
m
(
v‖ − vd‖

)2
+

1

2
mv2⊥

)
f(v‖, v⊥)dv‖dv⊥

=
2

3

∫ 1

−1

∫ ∞
0

(
E − vd‖ξ

√
2mE +

1

2
mv2d‖

)
f(E, ξ)dEdξ, (29)

The corresponding kinetic temperatures are

T‖ =
p‖
n
, (30)

T⊥ =
p⊥
n
, (31)

T =
p

n
=

1

3

(
T‖ + 2T⊥

)
. (32)

If the distribution is Maxwellian, these definitions for kinetic pressures and temperatures

reduce to our thermodynamic notions.

5. Overview of discharges #32323 and #33178

In sections 6 and 7 we will investigate discharge #32323 theoretically, and in section 8

we will present measurements in discharges #32323 and #33178. Here we give a brief

overview of these discharges. Figure 2 presents time traces of the auxiliary heating

power and the plasma stored energy WMHD as well as the impurity (boron) and electron

temperatures in the plasma center and the line-integrated electron density. The auxiliary

heating was by neutral beam injection (NBI) and electromagnetic wave heating in

the electron cyclotron range of frequencies (ECRF) and in the ion cyclotron range of

frequencies (ICRF). The measurement times are highlighted in grey. Discharge #32323

has a very low density (2 × 1019 m−3) and 2.5 MW of NBI heating power (by NBI

source S3) which leads to a high impurity temperature (7 keV). We will show that

the deuterium population in this discharge is non-Maxwellian and substantially hotter.

Discharge #33178 had a higher density ((6− 7× 1019 m−3)) and 3.5 MW NBI heating.

We will compare the anisotropic deuterium temperatures with and without additional

4 MW ICRF heating at 5.5 s and 7 s, respectively.

Profiles of the temperatures and the toroidal drift velocities as function of the

normalized toroidal magnetic flux ρt for the three analyzed time points are presented

in figure 3. The measured boron impurity temperatures and toroidal drift velocities

are fairly close to corresponding neoclassical predictions for deuterium according to

TRANSP in discharge #33178 whereas they differ by up to about 10−15% in discharge

#32323. These neoclassical predictions assume Maxwellian distributions for deuterium

and boron. In the next section we will show that such neoclassical predictions are not

uniquely measurable quantities in non-Maxwellian plasmas due to the presence of fast

ions.
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Figure 2. Overview of discharges #32323 and #33178. Time traces of NBI, ECRH

and ICRH power and the plasma stored energy WMHD as well as the impurity and

electron temperatures in the plasma center and the line-integrated electron density.

The time points used in the analysis are highlighted in grey: 1.711 s in discharge

#32323 and 5.5 s and 7 s in discharge #33178.

(a) (b)

Figure 3. Profiles of measured boron (B) temperatures and toroidal drift velocities

with corresponding neoclassical predictions for deuterium (D) according to TRANSP

for the three measurements we will discuss. ρt is the normalized toroidal magnetic

flux.
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6. 1D fits of Maxwellians to non-Maxwellian distribution functions

In this section we discuss difficulties in fitting 1D Maxwellians to non-Maxwellian

deuterium populations as an underlying model for typical data analysis in Dα-based CER

spectroscopy [24–34] and CTS [38–41]. Otherwise this section makes no reference to any

particular diagnostic to gain insight into the basic difficulty. Whereas the Maxwellian

velocity distribution function could be a good model for impurity species in the plasma,

TRANSP simulations suggest that it can be a poor model for the main-ion species

deuterium. The reason is that auxiliary heating selectively populates particular regions

in velocity space. Deuterium ICRF and NBI heating therefore generate non-Maxwellian

populations of deuterium ions.

Simulation codes such as the widely used TRANSP code deal with the non-

Maxwellian ion population by artificially splitting the actual ion population into a

thermal, Maxwellian ion population and an energetic (E > 1.5 Ti), non-Maxwellian

population. In TRANSP the deuterium temperature, drift velocity and density of the

introduced Maxwellian ion population are calculated based on other measurements, e.g.

impurity temperatures and drift velocities. The fast-ion population is calculated by

the NUBEAM module. The actual ion population is then modelled as the sum of the

Maxwellian and the fast-ion population (figure 1).

However, the splitting of the total deuterium population into two artificial parts

based on experimental data is ambiguous. Figure 4 illustrates this dilemma in a

1D example. We project the 2D velocity distribution functions from figure 1 onto a

diagnostic line-of-sight at φ = 80◦ as discussed in section 3. The contributions from the

Maxwellian population and the fast-ion population are plotted in blue as well as the

total population (the sum) in black. However, in an experiment we can only measure

the total population. The temperature of the Maxwellian according to TRANSP is

6 keV which is the deuterium temperature neoclassically calculated from the impurity

temperature. We also show an alternative Maxwellian at 7 keV with the same density

and its non-Maxwellian fast-ion complement summing up to the same total distribution.

As there is no way to decide which splitting is best, the temperature, drift velocity and

densities are ambiguous if a significant non-Maxwellian population is present. The same

dilemma occurs for 2D velocity distribution functions.

An approach to bypass this dilemma is to assume that the energetic, non-

Maxwellian population is negligible. Then the total deuterium population reduces to the

Maxwellian part. In figure 5 we show temperatures and drift velocities found by fitting

1D Maxwellians to the total projected velocity distribution function from figure 4. The

x-axis shows the interval in the projected velocity u which is a proxy for the frequency

or wavelength range of CTS or CER spectra used in the fit (equations 7 and 8). In CTS

measurements, only measurement data at small projected velocities u (or Doppler shifts)

typical for thermal ions are used to measure temperatures [38–41]. However, figure 5

illustrates that the fitted temperature depends on the range of projected velocities used

in the fit, in particular if this range is small. It appears to be best to use wide ranges so
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Figure 4. Projection of the velocity distribution functions simulated by TRANSP

from figure 1 onto the line-of-sight (φ = 80◦). The nominal temperature is 6 keV.

Given only the total velocity distribution function (black), the splitting into thermal

and fast-ion parts is not unique. This is illustrated by splitting the total distribution

into two parts using Maxwellians with temperatures of 6 keV and 7 keV and their

respective fast-ion distribution adding to the same total distribution.

that the fitted temperature does not strongly depend on the projected velocity range.

We further vary the adopted ratio of the densities of fast-ion and thermal

populations, nf/nth, which can be computed from the TRANSP simulation. The fitted

temperatures and drift velocities depend on both parameters. The nominal density

ratio according to TRANSP for the distributions shown in figure 1 is nf/nth = 0.3.

For ASDEX Upgrade discharge #32323, the fitted temperature obtained from the total

distribution according to TRANSP is about 9 keV which is substantially higher than

the nominal temperature according to TRANSP (6 keV). The lower the density of fast

ions, the more the fitted temperature to the total population approaches the nominal

temperature.

Similar trends are observed for the drift velocity. Figure 5 suggests that we

should expect to see differences between the fitted main-ion temperature and the

corresponding nominal value from TRANSP due to the deviation from a Maxwellian.

The density ratio nf/nth can be used to estimate how large this effect is for the discharge

under consideration. This effect might partly explain the sometimes observed higher

fitted temperatures and drift velocities of deuterium compared with the corresponding

TRANSP estimates [41].
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(a) (b)

Figure 5. (a) Fitted temperatures (φ = 80◦) and (b) parallel drift velocities (φ = 10◦)

assuming that the total velocity distribution function is Maxwellian. The x-axes show

the fitting interval in u which is [−ulim;ulim] excluding the interval [−2; 2]× 105 m/s

which is typically not experimentally accessible due to the need for a notch filter

blocking e.g. the gyrotron radiation or the cold Dα-line. The angles φ are judiciously

selected to illustrate large temperature and drift velocity changes.

7. 2D fits of Maxwellians and bi-Maxwellians to non-Maxwellian

distribution functions

The 1D examples hinted that the fitted temperatures and drift velocities depend on

the fast ion population which is strongly non-Maxwellian. In figure 6 we consider an

analogous 2D example, focusing just on the 2D velocity distribution function underlying

the measurements but without reference to any particular diagnostic or line-of-sight. We

consider again the TRANSP simulation illustrated in figure 1 where the total deuterium

population is modelled to consist of a thermal, Maxwellian part and an energetic ion part

computed by NUBEAM. Here we compute the kinetic drift velocities and temperatures

of the total velocity distribution function according to section 4 and compare these with

the corresponding parameters obtained by fitting bi-Maxwellians and Maxwellians to the

total (non-Maxwellian) velocity distribution function. This modelled total distribution

is illustrated in figure 1(c). Mathematically, we find the fitted parallel and perpendicular

temperatures and parallel drift velocities by solving the minimization problem

minimizevd,T‖,T⊥

(
fMaxw(E, ξ, ntot, vd, T‖, T⊥)− ftot(E, ξ)

)
(33)

where ftot(E, ξ) is the total distribution in figure 1(c). This non-weighted minimization

is done for the velocity-space up to 70 keV as illustrated in figure 1. The best-fitting

single temperature Maxwellian is obtained with the same formalism and the contraint

T = T‖ = T⊥.

We again vary the ratio nf/nth. In the case of bi-Maxwellian populations, the

kinetic parameters are the same as the fitted bi-Maxwellian parameters. If T‖ = T⊥,

the bi-Maxwellian further reduces to the Maxwellian. This limit is approached for

nf/nth � 1 where all temperatures approach 6 keV (figure 6(a)) and the parallel drift
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velocity 3 × 105 m/s (figure 6(b)). For larger nf/nth the kinetic temperatures and

the drift velocity increase due to the presence of fast ions. The perpendicular kinetic

temperature is larger than the parallel kinetic temperature for NBI source S3 at ASDEX

Upgrade due to the beam geometry (injection pitch p ∼ 0.6 in the plasma center as

illustrated in figure 1(b)). The total kinetic temperature is a 2:1 weighted average

between the perpendicular and parallel kinetic temperatures (equation 32). Figure 6(b)

shows an analogous comparison of fitted parallel drift velocities and the corresponding

kinetic parallel drift velocities computed as moment of the total velocity distribution

function. The fitted parallel drift velocities remain fairly constant for nf/nth < 0.3 and

then increase strongly whereas the kinetic parallel drift velocity increases smoothly.

The bi-Maxwellian temperatures also increase with the ratio nf/nth but for

nf/nth = 0.3, as in ASDEX Upgrade discharge #32323, the fitted parallel temperature is

larger than the fitted perpendicular temperature in disagreement with the corresponding

kinetic temperatures. The difference to the corresponding kinetic values is about 2 keV.

The differences in these temperatures and drift velocities suggest that the drifting

Maxwellian and the drifting bi-Maxwellian models do not describe typical distribution

functions in a low-density, NBI heated ASDEX Upgrade plasma well. The best fits have

a too low drift velocity up to well beyond nf/nth = 0.3 which might be related to the

too high parallel and too low perpendicular temperatures of the best fit.

(a) (b)

Figure 6. Kinetic temperatures and drift velocities as function of the adopted density

ratio of the fast ions and thermal ions in the TRANSP picture. The nominal TRANSP

deuterium values are T = 6 keV and vd = 300 km/s. Results from fits of Maxwellians

and bi-Maxwellians to the total distribution are also shown.
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8. Measurement results

In previous sections we have studied how energetic ion populations due to auxiliary

plasma heating influence measurements of main-ion temperatures based on theoretical

considerations. It appeared that unique densities, drift velocities and anisotropic

temperatures could be obtained by considering the total ion velocity distribution

function, rather than an artificially introduced thermal part. In this section we develop

two formalisms based on these findings allowing for possible anisotropy in the plasma,

and we demonstrate them using experimental data. We infer temperatures following two

new approaches exploiting that the five active Dα-based CER views allow measurements

of kinetic anisotropy. Both approaches rely on the weight function formalism [52,67–72].

8.1. Fits to the Dα spectra using bi-Maxwellians

In previous applications of weight functions, the total ion distribution has been split

into thermal and non-thermal parts. The weight functions depend only on thermal

parameters in this picture, whereas they are applied only to energetic, non-thermal

ions. Hence we could relate the measurable signal S to the fast-ion velocity distribution

function F by the linear matrix equation

S = WF (34)

where W is a matrix composed of weight functions [53]. However, as we now seek to

infer the total deuterium distribution function, the weight functions now depend on the

function that we seek to infer, and we obtain a non-linear problem

S = W (F )F. (35)

The weight functions W (F ) can be computed for arbitrary velocity distribution

functions but this is computationally very demanding. Here we seek a computationally

faster approach and generate a database of weight functions for bi-Maxwellian

parameters. The best fitting bi-Maxwellian is found by solving the minimization problem

minimize

∥∥∥∥S −W (FbiMax)FbiMax

∥∥∥∥
2

(36)

where W (FbiMax) is the weight function matrix computed using the bi-Maxwellian test

functions. The weight functions have been precomputed for a discretization in the

parameters (n, vd, T‖, T⊥). This allows us to find the best fitting drifting bi-Maxwellian

to the five simultaneously measured spectra given the physics model encoded in the

weight functions. Traditionally, one 1D Maxwellian is fit to one CER spectrum.

Our approach combines measurements from various detectors allowing integrated data

analysis. Furthermore, the weight function formalism accounts for the effect of the

halo and the variable charge-exchange probabilities for different energies, pitches, and

gyro-angles [67, 73]. As consequence we do not obtain any apparent temperatures and

apparent drift velocities that need to be corrected [74]. If the velocity distribution
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function is close to bi-Maxwellian, all parameters can be found rapidly by matrix

multiplication.

We applied this formalism to the five simultaneously measured Dα-based CER

spectra in ASDEX Upgrade discharge #32323 obtained for the plasma described in

figure 1 [50]. With this approach we find parallel and perpendicular temperatures

that are consistently higher than the deuterium temperature of 6 keV neoclassically

determined by TRANSP based on the measured boron temperature. However, the

values vary substantially in the range 7 keV to about 13 keV (depending on used data

ranges) and either the parallel or perpendicular temperature of the fitted bi-Maxwellian

is higher. This behavior is consistent with the difficulty of fitting a Maxwellian or

bi-Maxwellian to a realistic total distribution function as these are not good models

in this case (section 7). While this approach works very well using synthetic data and

presumably also in bi-Maxwellian plasma, we do not obtain unique results in the strongly

non-Maxwellian plasma in discharge #32323 investigated here.

8.2. Temperature and drift velocity measurements by velocity-space tomography

Our second new approach to measure bulk plasma parameters is to find the best

fitting smooth velocity distribution function by velocity-space tomography based on

the five spectra of Dα-light. In this approach no specific functional form of the ion

velocity distribution function is assumed, such as a Maxwellian or bi-Maxwellian, which

in turn makes regularization necessary to obtain useful solutions. In previous work

velocity-space tomography has been restricted to analysis of Dα-light with large Doppler

shifts, so-called fast-ion Dα-light (FIDA [65,75]), and to the part of velocity space with

energies larger than 15-20 keV. Here we include the thermal feature in the fit and infer

the complete velocity distribution function of the deuterium population. The basic

plasma parameters n, vd,‖, T‖, T⊥, p‖ and p⊥ can be calculated by taking appropriate

zeroth to second moments of the resulting distribution function (section 4). Due to the

nonlinear nature of the problem (section 8.1), we calculate the solution iteratively. The

minimization problem in iteration step i now becomes

minimize

∥∥∥∥( W (FbiMax(ni−1, vd‖,i−1, T‖,i−1, T⊥,i−1))

λL

)
Fi −

(
S

0

)∥∥∥∥
2

subject to Fi ≥ 0

(37)

where the bi-Maxwellian parameters ni−1, vd‖,i−1, T‖,i−1 and T⊥,i−1 are found as the

lowest moments of Fi−1 according to section 4. The results are not sensitive to the start

guess. L is a matrix operator effecting a numerical approximation to a gradient [58].

In this is so-called first-order Tikhonov regularization the parameter λ balances the

requirements to fit the data and smoothness [50].

In figure 7, the measured total distribution function in discharge #32323 is

compared with the corresponding TRANSP simulation, which is the sum of fast-ion

and thermal contributions. The tomography problem was solved for energies to the

left of the dashed line. The phase-space densities to the right of the dashed line
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are assumed to be small since no FIDA light above the noise level is observed in

the part of the spectra probing only these velocity-space regions [50]. Overall, the

measurement and the simulation are in excellent agreement. Figure 8 demonstrates

that the simulated and measured loop voltages, the plasma stored energies, and the

neutron rates also agree well, indicating that the TRANSP simulation is a good model

for this discharge. The observed differences between the tomographic inversion and

the simulated ion distribution function in figure 7 partly originate from reconstruction

uncertainties and could also partly originate from anomalous effects not caught in the

TRANSP simulation.

(a) Tomography (b) Simulation

(c) Difference

Figure 7. Comparison of a (a) measurement of f(E, p) [1016/(keV m3)] by velocity-

space tomography and a (b) TRANSP simulation for discharge #32323 at 1711 ms

before a sawtooth crash in the plasma center. The simulation is the sum of a

Maxwellian at 6 keV and the fast-ion velocity distribution function computed with

NUBEAM. (c) Difference between (a) and (b).

However, the inference of the low-energy part of velocity space hampers the

inference of the high-energy part of velocity space due to the much larger phase-space

densities in the low-energy part. For example, the peaks at the NBI injection energies

are not found whereas they are routinely found in fast-ion velocity-space tomography



Salewski et al (2018) 18

(a) Loop voltage (b) Plasma stored energy (c) Neutron rate

Figure 8. Comparison of the TRANSP simulation in 32323 and measurements. (a)

Loop voltage. (b) Plasma stored energy. (c) Neutron rate.

studies [50]. It will therefore still be advantageous to introduce a lower energy limit in

velocity-space tomography studies that are focused on fast ions.

Our goal here is to calculate the lowest moments of the velocity distribution function

(section 4). We find that the total density is 2.3× 1019m−3 which is comparable to the

total density in TRANSP/NUBEAM (2.6 × 1019m−3). The measured drift velocity is

400 km/s and the measured temperatures are T‖ = 9 keV and T⊥ = 11 keV. The

corresponding values obtained with TRANSP/NUBEAM when the simulated fast-ion

distribution from NUBEAM is accounted for by computing the moments of the total ion

distribution function (figure 1(c)) are T‖ = 8.3 keV, T⊥ = 10.4 keV, vd = 400 km/s. The

agreement between measurements and simulation accounting for fast-ions is excellent.

The nominal TRANSP deuterium density (2×1019m−3), temperature (6 keV) and drift

velocity (300 km/s) are not uniquely measurable quantities. The agreement corroborates

our new approach to temperature measurements, and it suggests that the nominal

temperatures given by TRANSP need to be regarded as lower bounds. We note that

this discharge has a very high nf/nth. In more conventional discharges these differences

are smaller according to figure 6.

As a second example of temperature measurements by velocity-space tomography,

we study the impact of electromagnetic wave heating in the ion cyclotron range of

frequencies (ICRF). Discharge #33178 was heated by NBI and ECRH at 5.5 s and by

NBI, ECRH and 2nd harmonic ICRF heating at 7 s (figure 2). The plasma was at

steady-state at both times. The core electron density was 6 − 7 × 1019 m−3 which is

higher than in previous applications of velocity-space tomography. The inversions for

both heating schemes are compared in figure 9. The ICRF heating populates the high-

energy space such that the distribution function becomes broader. We find evidence

for acceleration above the full NBI energy of 60 keV as expected for the 2nd harmonic

ICRF heating scenario which accelerates fast ions from NBI. These results are consistent

with recent measurements of the fast-ion velocity distribution function in a comparable

plasma scenario [62]. The central boron temperature and the neoclassically computed

central deuterium temperature according to TRANSP in the NBI-only phase were about

2.3 keV. In the ICRF-heating phase both temperatures are about 1 keV higher according

to TRANSP.
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From the inversion, we find deuterium temperatures of T‖ = 5 keV and T⊥ = 6 keV

for the NBI-only phase. The ICRF heating increased both T‖ and T⊥ by 2 keV. We find

no evidence for preferential heating in the perpendicular direction. The expected tail

in the perpendicular direction is likely below the detection limit of FIDA, in particular

at high energies exceeding about 150 keV. This is in contrast to the strong fast-ion

tail in the perpendicular direction observed at JET above 150 keV [61, 76–78] as γ-

ray and neutron emission spectroscopy used for the inversion are much more sensitive

at very high energies [57, 69, 71, 72]. At ASDEX Upgrade such an ICRF heating tail

could not be detected by FIDA. Nevertheless, effects of the heating are observed. Fast

ions above the critical energy heat preferentially the electrons which in turn quickly

approach equilibrium and heat the ions without preferred direction as we observe. At

JET, energies below 150 keV were not studied as the γ-ray measurements have little

sensitivity at such energies.

Lastly, we note that a substantial fraction of the ICRF heating accelerates hydrogen

[62]. Hα-light is therefore also detected by FIDA. According to calculations the hydrogen

ions become strongly anisotropic with a long high-energy tail. However, this happens at

energies outside the FIDA detection range [62]. As the hydrogen is an impurity species

with low concentration, we here neglect the presence of hydrogen.

Figure 9. Comparison of measurements of f(E, p) [1016/(keV m3)] in the plasma

center without ICRF heating (dashed lines) and with ICRF heating (full lines) in

discharge #33178.

9. Conclusions

We propose two new approaches to measure deuterium densities, drift velocities and

parallel and perpendicular temperatures. We further derive an expression for the

projection of an arbitrarily drifting bi-Maxwellian distribution function onto the line-

of-sight of ion diagnostics, e.g. a CER spectrometer. This projection suggests
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that measurements of any anisotropy are feasible if simultaneous measurements using

different lines-of-sight are made. We measured five active spectra of Doppler-shifted

Dα-light with the five-view FIDA system at ASDEX Upgrade usually used for fast-ion

velocity-space tomography.

In our first approach, we fit a bi-Maxwellian to the five simultaneously acquired

spectra to obtain the density, the parallel drift velocity and the parallel and

perpendicular temperature. Whereas this approach should work well for plasmas that

have a bi-Maxwellian distribution function, we demonstrate that it is less reliable in

strongly heated, low-density plasmas in fusion devices due to the non-Maxwellian and

non-bi-Maxwellian nature of the plasma.

In our second approach, the full velocity distribution function is measured using

velocity-space tomography. Here the bulk plasma parameters are obtained as the

lowest moments of the measured velocity distribution function. For a Maxwellian

distribution these kinetic parameters reduce to the usual Maxwellian parameters.

Firstly, we find that the kinetic temperatures are substantially higher than the usual

thermal temperatures calculated from impurity temperatures using TRANSP. This is

explained by the impact of fast ions. We stress that the kinetic temperatures are

experimentally accessible parameters in any plasma whereas the nominal Maxwellian

deuterium temperature according to TRANSP is not a uniquely measurable quantity in

the presence of an even moderate fast ion population. Secondly, in a plasma heated by

NBI at ASDEX Upgrade, we find substantial anisotropy in the plasma. The measured

perpendicular temperature is T⊥ = 11 keV whereas the parallel temperature is T‖ =

9 keV. The measured boron temperature is 7 keV, and TRANSP determines the single

deuterium temperature of 6 keV neoclassically from this boron measurement. However,

the parallel and perpendicular temperatures computed as second moments of the sum

of the Maxwellian and the fast-ion population from NUBEAM give T⊥ = 10.4 keV and

T‖ = 8.3 keV which are in excellent agreement with the measurement. Similarly, the

measured parallel drift velocity of 400 km/s is in excellent agreement with TRANSP,

if corrected for the impact of fast ions, whereas the nominal deuterium drift velocity

computed with TRANSP without any fast-ion correction is 300 km/s. The measured

boron drift velocity in the plasma center is 270 km/s. As second example, we studied an

ICRF heated plasma. Any preferential heating due to ICRF could not be detected using

Dα-based CER spectroscopy. ICRF elevated the measured parallel and perpendicular

temperatures by similar amounts (2 keV).
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