24 research outputs found

    Untangling intra- and interspecific effects on body size clines reveals divergent processes structuring convergent patterns in Anolis lizards

    Get PDF
    Bergmann’s rule—the tendency for body size to increase in colder environments—remains controversial today, despite 150 years of research. Considerable debate has revolved around whether the rule applies within or among species. However, this debate has generally not considered that clade-level relationships are caused by both intra- and interspecific effects. In this article, we implement a novel approach that allows for the separation of intra- and interspecific components of trait-environment relationships.We apply this approach to body size clines in two Caribbean clades of Anolis lizards and discover that their similar body size gradients are constructed in very different ways. We find inverse Bergmann’s clines—high elevation lizards are smaller bodied—for both the cybotes clade on Hispaniola and the sagrei clade on Cuba. However, on Hispaniola, the inverse cline is driven by interspecific differences, whereas intraspecific variation is responsible for the inverse cline on Cuba. Our results suggest that similar body size clines can be constructed through differing evolutionary and ecological processes, namely, through local adaptation or phenotypic plasticity (intraspecific clines) and/or size-ordered spatial sorting (interspecific clines). We propose that our approach can help integrate a divided research program by focusing on how the combined effects of intra- and interspecific processes can enhance or erode clade-level relationships at large biogeographic scales

    Investigating the Genetic Basis for Hominoid Taillessness

    Get PDF
    Investigating the Genetic Basis for Hominoid Taillessness: A Comparative Genetic Approach Across Ten Catarrhine Taxa Samantha Tickey-McCrane1,2, Johanna E. Wegener2, and Holly Dunsworth1 Honors Thesis Abstract Written by Samantha Tickey-McCrane, Departments of Anthropology & Biology Advisor: Dr. Holly Dunsworth, Department of Anthropology How did hominoid tail loss occur? My goals are to test phylogenetic and adaptive hypotheses for tail length variation among macaques, and use those insights to reconstruct the evolution of hominoid taillessness. Further, I aim to ultimately uncover which candidate genes or pathways may be responsible for catarrhine tail loss, and what other traits may be affected by these developmental and genetic pathways. I explored published catarrhine vertebral counts and phylogenies in the literature. I also collected data from 95 Macaca and Papio individuals in the collections at the American Museum of Natural History, NY. Based on known mechanisms of tail formation in embryos, I identified the genes that might be responsible for the interruption of tail development. I took these candidates to the annotated whole genomes of catarrhine primates and used a comparative approach across 10 taxa. I also focused on cis-regulatory regions 1,000 base pairs upstream of the candidate genes, that may have been involved in gene regulation. Regarding the skeletal data, there appears to be a pattern where tail length variation is determined by factors of 3-4 caudal vertebrae, suggesting a segmental basis for the genetic factors involved. My preliminary genomic analyses indicate that comparing candidate genes is valuable, but is only a first step because regulatory non-exonic elements associated with these genes are more likely to be involved in taillessness. Investigating the developmental and genetic bases of tail variation among Macaca holds great promise for reconstructing the evolutionary history of hominoid taillessness and its consequences. Future studies continuing to probe whole genomes and the expansion of available primate genomes will make this possible. If we can discover the underlying genetic mechanisms for taillessness, we can reconstruct the evolution of this significant feature that we share with apes, and that may have been a necessary precursor to bipedalism. Acknowledgements Thank you to Johanna E. Wegener and Dr. Holly Dunsworth of the University of Rhode Island for their continual mentorship in a new area of study for me, collaboration, and support

    A Comparison of the Population Genetic Structure and Diversity between a Common (\u3cem\u3eChrysemys p. picta\u3c/em\u3e) and an Endangered (\u3cem\u3eClemmys guttata\u3c/em\u3e) Freshwater Turtle

    Get PDF
    The northeastern United States has experienced dramatic alteration to its landscape since the time of European settlement. This alteration has had major impacts on the distribution and abundance of wildlife populations, but the legacy of this landscape change remains largely unexplored for most species of freshwater turtles. We used microsatellite markers to characterize and compare the population genetic structure and diversity between an abundant generalist, the eastern painted turtle (Chrysemys p. picta), and the rare, more specialized, spotted turtle (Clemmys guttata) in Rhode Island, USA. We predicted that because spotted turtles have disproportionately experienced the detrimental effects of habitat loss and fragmentation associated with landscape change, that these effects would manifest in the form of higher inbreeding, less diversity, and greater population genetic structure compared to eastern painted turtles. As expected, eastern painted turtles exhibited little population genetic structure, showed no evidence of inbreeding, and little differentiation among sampling sites. For spotted turtles, however, results were consistent with certain predictions and inconsistent with others. We found evidence of modest inbreeding, as well as tentative evidence of recent population declines. However, genetic diversity and differentiation among sites were comparable between species. As our results do not suggest any major signals of genetic degradation in spotted turtles, the southern region of Rhode Island may serve as a regional conservation reserve network, where the maintenance of population viability and connectivity should be prioritized

    Head Size of Male and Female Lizards Increases with Population Density Across Island Populations in the Bahamas

    Get PDF
    In polygynous lizards, male–male competition is an important driver of morphologic and behavioral traits associated with intraspecific dominance. The extent to which females engage in aggressive behavior and thus contribute to competition-driven morphologic variation is not well studied. We used injury frequencies of brown anoles (Anolis sagrei) in 16 island populations to test the hypothesis that injury-inducing aggressive encounters increase with population density in both male and female lizards. We further asked whether intraspecific competition is a potential driver of phenotypic traits related to dominance by using population density as proxy for intraspecific competition. We found that the proportion of individuals with injuries was greater in populations with higher densities, suggesting that agonistic competitive interactions increase with population density. Size-adjusted head length of male and female lizards increased with population density, suggesting that larger heads might be advantageous when intraspecific competition is strong. We detected differences in morphology and injury frequency among islands for both males and females, which suggests that agonistic competitive interactions among females may be stronger than previously appreciated. Further research is needed to determine whether aggressive encounters involving females are restricted to intrasexual competition or whether they also involve males, and how morphologic traits of females are related to competitive dominance and reproductive success

    An incipient invasion of brown anole lizards (\u3cem\u3eAnolis sagrei\u3c/em\u3e) into their own native range in the Cayman Islands: a case of cryptic back-introduction

    Get PDF
    Human-mediated dispersal has reshaped distribution patterns and biogeographic relationships for many taxa. Long-distance and over-water dispersal were historically rare events for most species, but now human activities can move organisms quickly over long distances to new places. A potential consequence of human-mediated dispersal is the eventual reintroduction of individuals from an invasive population back into their native range; a dimension of biological invasion termed “cryptic back-introduction.” We investigated whether this phenomenon was occurring in the Cayman Islands where brown anole lizards (Anolis sagrei) with red dewlaps (i.e., throat fans), either native to Little Cayman or invasive on Grand Cayman, have been found on Cayman Brac where the native A. sagrei have yellow dewlaps. Our analysis of microsatellite data shows strong population-genetic structure among the three Cayman Islands, but also evidence for non-equilibrium. We found some instances of intermediate multilocus genotypes (possibly 3–9% of individuals), particularly between Grand Cayman and Cayman Brac. Furthermore, analysis of dewlap reflectance data classified six males sampled on Cayman Brac as having red dewlaps similar to lizards from Grand Cayman and Little Cayman. Lastly, one individual from Cayman Brac had an intermediate microsatellite genotype, a red dewlap, and a mtDNA haplotype from Grand Cayman. This mismatch among genetic and phenotypic data strongly suggests that invasive A. sagrei from Grand Cayman are interbreeding with native A. sagrei on Cayman Brac. To our knowledge, this is the first evidence of cryptic back-introduction. Although we demonstrate this phenomenon is occurring in the Cayman Islands, assessing its frequency there and prevalence in other systems may prove difficult due to the need for genetic data in most instances. Cryptic back-introductions may eventually provide some insight into how lineages are changed by the invasion process and may be an underappreciated way in which invasive species impact native biodiversity

    Anaerobic methane oxidation inducing carbonate precipitation at abiogenic methane seeps in the Tuscan archipelago (Italy)

    Get PDF
    Seepage of methane (CH4) on land and in the sea may significantly affect Earth's biogeochemical cycles. However processes of CH4 generation and consumption, both abiotic and microbial, are not always clear. We provide new geochemical and isotope data to evaluate if a recently discovered CH4 seepage from the shallow seafloor close to the Island of Elba (Tuscany) and two small islands nearby are derived from abiogenic or biogenic sources and whether carbonate encrusted vents are the result of microbial or abiotic processes. Emission of gas bubbles (predominantly CH4) from unlithified sands was observed at seven spots in an area of 100 m(2) at Pomonte (Island of Elba), with a total rate of 234 ml m(-2) d(-1). The measured carbon isotope values of CH4 of around -18 parts per thousand (VPDB) in combination with the measured delta H-2 value of -120 parts per thousand (VSMOW) and the inverse correlation of delta C-13-value with carbon number of hydrocarbon gases are characteristic for sites of CH4 formation through abiogenic processes, specifically abiogenic formation of CH4 via reduction of CO2 by H-2. The H-2 for methanogenesis likely derives from ophiolitic host rock within the Ligurian accretionary prism. The lack of hydrothermal activity allows CH4 gas to become decoupled from the stagnant aqueous phase. Hence no hyperalkaline fluid is currently released at the vent sites. Within the seep area a decrease in porewater sulphate concentrations by ca. 5 mmol/l relative to seawater and a concomitant increase in sulphide and dissolved inorganic carbon (DIC) indicate substantial activity of sulphate-dependent anaerobic oxidation of methane (AOM). In absence of any other dissimilatory pathway, the delta C-13-values between -17 and -5 parts per thousand in dissolved inorganic carbon and aragonite cements suggest that the inorganic carbon is largely derived from CH4. The formation of seep carbonates is thus microbially induced via anaerobic oxidation of abiotic CH4

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore