58 research outputs found

    Sr-isotope analysis of speleothems by LA-MC-ICP-MS: High temporal resolution and fast data acquisition

    Get PDF
    Speleothems are well established climate archives. A wide array of geochemical proxies, including stable isotopes and trace elements are present within speleothems to reconstruct past climate variability. However, each proxy is influenced by multiple factors, often hampering robust interpretation. Sr isotope ratios (87Sr/86Sr) can provide useful information about water residence time and water mixing in the host rock, as they are not fractionated during calcite precipitation. Laser ablation multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) has rarely been used for determination of Sr isotope signatures in speleothems, as speleothems often do not possess appropriately high concentrations of Sr to facilitate this analysis. Yet the advantages of this approach include rapid data acquisition, higher spatial resolution, larger sample throughput and the absence of chemical treatment prior to analysis. We present LA-MC-ICP-MS Sr isotope data from two speleothems from Morocco (Grotte de Piste) and India (Mawmluh Cave), and we compare linescan and spot analysis ablation techniques along speleothem growth axes. The analytical uncertainty of our LA-MC-ICP-MS Sr data is comparable to studies conducted on other carbonate materials. The results of both ablation techniques are reproducible within analytical error, implying that this technique yields robust results when applied to speleothems. In addition, several comparative measurements of different carbonate reference materials (i.e. MACS-3, JCt-1, JCp-1), including tests with standard bracketing and comparison of the 87Sr/86Sr ratios with a nanosecond laser ablation system and a state-of-the-art femtosecond laser ablation system, highlight the robustness of the method

    The magnesium isotope record of cave carbonate archives

    Get PDF
    Here we explore the potential of magnesium (δ<sup>26</sup>Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ<sup>26</sup>Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ<sup>26</sup>Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ<sup>26</sup>Mg: −3.96 ± 0.04‰) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ<sup>26</sup>Mg: −4.01 ± 0.07‰; BU 4 mean δ<sup>26</sup>Mg: −4.20 ± 0.10‰) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several δ<sup>26</sup>Mg values of the Austrian and two δ<sup>26</sup>Mg values of the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well-calibrated leaching and precipitation experiments

    Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions

    Get PDF
    The processes that govern the incorporation of (trace) elements into speleothems can often be linked to environmental changes. Although element incorporation into speleothem calcite is now reasonably well understood, current knowledge regarding trace element variability in speleothem aragonite is very limited. Of particular interest is whether trace element distribution coefficients are above or below one in order to assess the extent to which prior aragonite precipitation has affected speleothem aragonite trace element records. This study uses nine calcite-to-aragonite transitions in seven speleothems from diverse environmental settings to derive the first quantitative estimates of the distribution coefficients for several elements in speleothem aragonite: DMg(Ar) = 9.7E−5 ± 9.01E−5, DBa(Ar) = 0.91 ± 0.88, DSr(Ar) = 1.38 ± 0.53, and DU(Ar) = 6.26 ± 4.54 (1σ SD). For one speleothem from western Germany, the distribution coefficients are generally higher, which is potentially related to the very low growth rates (<11 μm/year) of this sample. In particular, DSr(Ar) appears to show a negative correlation with growth rate when growth rate is below 20 μm/year. In summary, our results demonstrate that speleothem aragonite DMg(Ar) is below one, DU(Ar) is considerably above one, and DSr(Ar) is above one or close to unity. For DBa(Ar), reaching a similar conclusion is difficult due to the relatively high uncertainty. Enhanced prior aragonite precipitation will thus result in lower U and higher Mg concentrations in speleothem aragonite, although in many cases Mg in speleothem aragonite is most likely dominated by other processes. This result suggests that U concentrations in aragonitic stalagmites could serve as a very effective proxy for palaeo-rainfall

    A sea surface temperature reconstruction for the southern Indian Ocean trade wind belt from corals in Rodrigues Island (19° S, 63° E)

    Get PDF
    The western Indian Ocean has been warming rapidly over recent decades, causing a greater number of extreme climatic events. It is therefore of paramount importance to improve our understanding of links between Indian Ocean sea surface temperature (SST) variability, climate change and sustainability of tropical coral reef ecosystems. Here we present monthly resolved coral Sr ∕ Ca records from two different locations from Rodrigues Island (63° E, 19° S) in the south-central Indian Ocean trade wind belt. We reconstruct SST based on a linear relationship with the Sr ∕ Ca proxy with records starting from 1781 and 1945, respectively. We assess relationships between the observed long-term SST and climate fluctuations related to the El Niño–Southern Oscillation (ENSO), the Subtropical Indian Ocean Dipole Mode (SIOD) and the Pacific Decadal Oscillation (PDO) between 1945 and 2006, respectively. The reproducibility of the Sr ∕ Ca records is assessed as are the potential impacts of diagenesis and corallite orientation on Sr ∕ Ca–SST reconstructions. We calibrate individual robust Sr ∕ Ca records with in situ SST and various gridded SST products. The results show that the SST record from Cabri provides the first Indian Ocean coral proxy time series that records the SST signature of the PDO in the south-central Indian Ocean since 1945. We suggest that additional records from Rodrigues Island can provide excellent records of SST variations in the southern Indian Ocean trade wind belt to unravel teleconnections with the SIOD/ENSO/PDO on longer timescales

    Characteristics and outcomes of older patients hospitalised for COVID-19 in the first and second wave of the pandemic in The Netherlands:the COVID-OLD study

    Get PDF
    BACKGROUND: as the coronavirus disease of 2019 (COVID-19) pandemic progressed diagnostics and treatment changed. OBJECTIVE: to investigate differences in characteristics, disease presentation and outcomes of older hospitalised COVID-19 patients between the first and second pandemic wave in The Netherlands. METHODS: this was a multicentre retrospective cohort study in 16 hospitals in The Netherlands including patients aged ≥ 70 years, hospitalised for COVID-19 in Spring 2020 (first wave) and Autumn 2020 (second wave). Data included Charlson comorbidity index (CCI), disease severity and Clinical Frailty Scale (CFS). Main outcome was in-hospital mortality. RESULTS: a total of 1,376 patients in the first wave (median age 78 years, 60% male) and 946 patients in the second wave (median age 79 years, 61% male) were included. There was no relevant difference in presence of comorbidity (median CCI 2) or frailty (median CFS 4). Patients in the second wave were admitted earlier in the disease course (median 6 versus 7 symptomatic days; P < 0.001). In-hospital mortality was lower in the second wave (38.1% first wave versus 27.0% second wave; P < 0.001). Mortality risk was 40% lower in the second wave compared with the first wave (95% confidence interval: 28–51%) after adjustment for differences in patient characteristics, comorbidity, symptomatic days until admission, disease severity and frailty. CONCLUSIONS: compared with older patients hospitalised in the first COVID-19 wave, patients in the second wave had lower in-hospital mortality, independent of risk factors for mortality. The better prognosis likely reflects earlier diagnosis, the effect of improvement in treatment and is relevant for future guidelines and treatment decisions

    Western Mediterranean Climate Response to Dansgaard/Oeschger Events: New Insights From Speleothem Records

    Get PDF
    The climate of the western Mediterranean was characterized by a strong precipitation gradient during the Holocene driven by atmospheric circulation patterns. The scarcity of terrestrial paleoclimate archives has precluded exploring this hydroclimate pattern during Marine Isotope Stages 5 to 3. Here we present stable carbon and oxygen isotope records from three flowstones from southeast Iberia, which show that Dansgaard/Oeschger events were associated with more humid conditions. This is in agreement with other records from the Iberian Peninsula, the Mediterranean, and western Europe, which all responded in a similar way to millennial‐scale climate variability in Greenland. This general increase in precipitation during Dansgaard/Oeschger events cannot be explained by any present‐day or Holocene winter atmospheric circulation pattern. Instead, we suggest that changes in sea surface temperature played a dominant role in determining precipitation amounts in the western Mediterranean

    Does gesture strengthen sensorimotor knowledge of objects? The case of the size-weight illusion

    Get PDF
    Co-speech gestures have been proposed to strengthen sensorimotor knowledge related to objects’ weight and manipulability. This pre-registered study (https ://www.osf.io/9uh6q /) was designed to explore how gestures affect memory for sensorimotor information through the application of the visual-haptic size-weight illusion (i.e., objects weigh the same, but are experienced as different in weight). With this paradigm, a discrepancy can be induced between participants’ conscious illusory perception of objects’ weight and their implicit sensorimotor knowledge (i.e., veridical motor coordination). Depending on whether gestures reflect and strengthen either of these types of knowledge, gestures may respectively decrease or increase the magnitude of the size-weight illusion. Participants (N = 159) practiced a problem-solving task with small and large objects that were designed to induce a size-weight illusion, and then explained the task with or without co-speech gesture or completed a control task. Afterwards, participants judged the heaviness of objects from memory and then while holding them. Confirmatory analyses revealed an inverted size-weight illusion based on heaviness judgments from memory and we found gesturing did not affect judgments. However, exploratory analyses showed reliable correlations between participants’ heaviness judgments from memory and (a) the number of gestures produced that simulated actions, and (b) the kinematics of the lifting phases of those gestures. These findings suggest that gestures emerge as sensorimotor imaginings that are governed by the agent’s conscious renderings about the actions they describe, rather than implicit motor routines

    North Atlantic Ice‐Rafting, Ocean and Atmospheric Circulation During the Holocene: Insights From Western Mediterranean Speleothems

    No full text
    In this study, we present a Holocene rainfall index based on three high-resolution speleothem records from the Western Mediterranean, a region under the influence of the westerly winds belt modulated by the North Atlantic Oscillation (NAO). On centennial to millennial timescales, we show that the North Atlantic ice-rafting events were likely associated with negative NAO-like conditions during the Early Holocene and the Late Holocene. However, our data reveal that this is not clearly the case for the mid-Holocene ice-rafting events, during which we also show evidence of positive NAO-like patterns from other paleo-oceanographic and paleo-atmospheric data. Hence, contradictory mechanisms involving prolonged periods of both north and south shifts of the westerly winds belt (resembling positive and negative NAO-like patterns) might at least partially trigger or amplify the ice-rafting events and the slowdown of the Atlantic Meridional Overturning Circulation

    The spatiotemporal extent of the Green Sahara during the last glacial period

    No full text
    Summary: The Sahara Desert, one of today’s most inhospitable environments, has known periods of enhanced precipitation that supported pre-historic humans. However, the Green Sahara timing and moisture sources are not well known due to limited paleoclimate information. Here, we present a multi-proxy (δ18O, δ13C, Δ17O, and trace elements) speleothem-based climate record from Northwest (NW) Africa. Our data document two Green Sahara periods during Marine Isotope Stage (MIS) 5a and the Early to Mid-Holocene. Consistency with paleoclimate records across North Africa highlights the east-west geographical extent of the Green Sahara, whereas millennial-scale North Atlantic cooling (Heinrich) events consistently resulted in drier conditions. We demonstrate that an increase in westerly-originating winter precipitation during MIS5a resulted in favorable environmental conditions. The comparison of paleoclimate data with local archaeological sequences highlights the abrupt climate deterioration and the decline in human density in NW Africa during the MIS5-4 transition, which suggests climate-forced dispersals of populations, with possible implications for pathways into Eurasia
    corecore