57 research outputs found

    Branes, Fluxes and Duality in M(atrix)-Theory

    Full text link
    We use the T-duality transformation which relates M-theory on T^3 to M-theory on a second T^3 with inverse volume to test the Banks-Fischler-Shenker-Susskind suggestion for the matrix model description of M-theory. We find evidence that T-duality is realized as S-duality for U(∞)U(\infty) N=4 Super-Yang-Mills in 3+1D. We argue that Kaluza Klein states of gravitons correspond to electric fluxes, wrapped membranes become magnetic fluxes and instantonic membranes are related to Yang-Mills instantons. The T-duality transformation of gravitons into wrapped membranes is interpreted as the duality between electric and magnetic fluxes. The identification of M-theory T-duality as SYM S-duality provides a natural framework for studying the M-theory 5-brane as the S-dual object to the unwrapped membrane. Using the equivalence between compactified M(atrix) theory and SYM, we find a natural candidate for a description of the light-cone 5-brane of M-theory directly in terms of matrix variables, analogous to the known description of the M(atrix) theory membrane.Comment: 14pp TeX, A suggestion for a matrix description of the 5-brane is added, and minor corrections are mad

    Three-graviton scattering in Matrix theory revisited

    Full text link
    We consider a subset of the terms in the effective potential describing three-graviton interactions in Matrix theory and in classical eleven-dimensional supergravity. In agreement with the results of Dine and Rajaraman, we find that these terms vanish in Matrix theory. We show that the absence of these terms is compatible with the classical supergravity theory when the theory is compactified in a lightlike direction, resolving an apparent discrepancy between the two theories. A brief discussion is given of how this calculation might be generalized to compare the Matrix theory and supergravity descriptions of an arbitrary 3-body system.Comment: 9 pages, LaTeX; v2: reference added, v3: text unchanged, Note added clarifying connection with other recent result

    On The spectrum of a Noncommutative Formulation of the D=11 Supermembrane with Winding

    Get PDF
    A regularized model of the double compactified D=11 supermembrane with nontrivial winding in terms of SU(N) valued maps is obtained. The condition of nontrivial winding is described in terms of a nontrivial line bundle introduced in the formulation of the compactified supermembrane. The multivalued geometrical objects of the model related to the nontrivial wrapping are described in terms of a SU(N) geometrical object which in the N→∞ N\to \infty limit, converges to the symplectic connection related to the area preserving diffeomorphisms of the recently obtained non-commutative description of the compactified D=11 supermembrane.(I. Martin, J.Ovalle, A. Restuccia. 2000,2001) The SU(N) regularized canonical lagrangian is explicitly obtained. In the N→∞ N\to \infty limit it converges to the lagrangian in (I.Martin, J.Ovalle, A.Restuccia. 2000,2001) subject to the nontrivial winding condition. The spectrum of the hamiltonian of the double compactified D=11 supermembrane is discussed. Generically, it contains local string like spikes with zero energy. However the sector of the theory corresponding to a principle bundle characterized by the winding number n≠0n \neq 0, described by the SU(N) model we propose, is shown to have no local string-like spikes and hence the spectrum of this sector should be discrete.Comment: 16 pages.Latex2

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Commissioning of the CMS high-level trigger with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS High-Level Trigger (HLT) is responsible for ensuring that data samples with potentially interesting events are recorded with high efficiency and good quality. This paper gives an overview of the HLT and focuses on its commissioning using cosmic rays. The selection of triggers that were deployed is presented and the online grouping of triggered events into streams and primary datasets is discussed. Tools for online and offline data quality monitoring for the HLT are described, and the operational performance of the muon HLT algorithms is reviewed. The average time taken for the HLT selection and its dependence on detector and operating conditions are presented. The HLT performed reliably and helped provide a large dataset. This dataset has proven to be invaluable for understanding the performance of the trigger and the CMS experiment as a whole.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe

    Performance of the CMS drift tube chambers with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPStudies of the performance of the CMS drift tube barrel muon system are described, with results based on data collected during the CMS Cosmic Run at Four Tesla. For most of these data, the solenoidal magnet was operated with a central field of 3.8 T. The analysis of data from 246 out of a total of 250 chambers indicates a very good muon reconstruction capability, with a coordinate resolution for a single hit of about 260 Îźm, and a nearly 100% efficiency for the drift tube cells. The resolution of the track direction measured in the bending plane is about 1.8 mrad, and the efficiency to reconstruct a segment in a single chamber is higher than 99%. The CMS simulation of cosmic rays reproduces well the performance of the barrel muon detector.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore