3,933 research outputs found
GRB060602B = Swift J1749.4-2807: an unusual transiently accreting neutron-star X-ray binary
We present an analysis of the Swift BAT and XRT data of GRB060602B, which is
most likely an accreting neutron star in a binary system and not a gamma-ray
burst. Our analysis shows that the BAT burst spectrum is consistent with a
thermonuclear flash (type-I X-ray burst) from the surface of an accreting
neutron star in a binary system. The X-ray binary nature is further confirmed
by the report of a detection of a faint point source at the position of the XRT
counterpart of the burst in archival XMM-Newton data approximately 6 years
before the burst and in more recent XMM-Newton data obtained at the end of
September 2006 (nearly 4 months after the burst). Since the source is very
likely not a gamma-ray burst, we rename the source Swift J1749.4-2807, based on
the Swift/BAT discovery coordinates. Using the BAT data of the type-I X-ray
burst we determined that the source is at most at a distance of 6.7+-1.3 kpc.
For a transiently accreting X-ray binary its soft X-ray behaviour is atypical:
its 2-10 keV X-ray luminosity (as measured using the Swift/XRT data) decreased
by nearly 3 orders of magnitude in about 1 day, much faster than what is
usually seen for X-ray transients. If the earlier phases of the outburst also
evolved this rapidly, then many similar systems might remain undiscovered
because the X-rays are difficult to detect and the type-I X-ray bursts might be
missed by all sky surveying instruments. This source might be part of a class
of very-fast transient low-mass X-ray binary systems of which there may be a
significant population in our Galaxy.Comment: Accepted for publication in MNRA
Protein biomarkers in blood reflect the interrelationships between stroke outcome, inflammation, coagulation, adhesion, senescence and cancer
The most important predictors for outcomes after ischemic stroke, that is, for health deterioration and death, are chronological age and stroke severity; gender, genetics and lifestyle/environmental factors also play a role. Of all these, only the latter can be influenced after the event. Recurrent stroke may be prevented by antiaggregant/anticoagulant therapy, angioplasty of high-grade stenoses, and treatment of cardiovascular risk factors. Blood cell composition and protein biomarkers such as C-reactive protein or interleukins in serum are frequently considered as biomarkers of outcome. Here we aim to provide an up-to-date protein biomarker signature that allows a maximum of mechanistic understanding, to predict health deterioration following stroke. We thus surveyed protein biomarkers that were reported to be predictive for outcome after ischemic stroke, specifically considering biomarkers that predict long-term outcome (≥ 3 months) and that are measured over the first days following the event. We classified the protein biomarkers as immune‑inflammatory, coagulation-related, and adhesion-related biomarkers. Some of these biomarkers are closely related to cellular senescence and, in particular, to the inflammatory processes that can be triggered by senescent cells. Moreover, the processes that underlie inflammation, hypercoagulation and cellular senescence connect stroke to cancer, and biomarkers of cancer-associated thromboembolism, as well as of sarcopenia, overlap strongly with the biomarkers discussed here. Finally, we demonstrate that most of the outcome-predicting protein biomarkers form a close-meshed functional interaction network, suggesting that the outcome after stroke is partially determined by an interplay of molecular processes relating to inflammation, coagulation, cell adhesion and cellular senescence
X-ray emission from isolated neutron stars
X-ray emission is a common feature of all varieties of isolated neutron stars
(INS) and, thanks to the advent of sensitive instruments with good
spectroscopic, timing, and imaging capabilities, X-ray observations have become
an essential tool in the study of these objects. Non-thermal X-rays from young,
energetic radio pulsars have been detected since the beginning of X-ray
astronomy, and the long-sought thermal emission from cooling neutron star's
surfaces can now be studied in detail in many pulsars spanning different ages,
magnetic fields, and, possibly, surface compositions. In addition, other
different manifestations of INS have been discovered with X-ray observations.
These new classes of high-energy sources, comprising the nearby X-ray Dim
Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the
Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to
several tens of confirmed members, plus many candidates, and allow us to study
a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant
Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from
pulsars and their systems", held in April, 201
From Dirty Data to Tidy Facts: Clustering Practices in Plant Phenomics and Business Cycle Analysis
This is the final version. Available on open access from Springer via the DOI in this recordThis chapter considers and compares the ways in which two types of data, economic observations and phenotypic data in plant science, are prepared for use as evidence for claims about phenomena such as business cycles and gene-environment interactions. We focus on what we call “cleaning by clustering” procedures, and investigate the principles underpinning this kind of cleaning. These cases illustrate the epistemic significance of preparing data for use as evidence in both the social and natural sciences. At the same time, the comparison points to differences and similarities between data cleaning practices, which are grounded in the characteristics of the objects of interests as well as the conceptual commitments, community standards and research tools used by economics and plant science towards producing and validating claims.European CommissionAlan Turing InstituteAustralian Research Counci
Control of star formation by supersonic turbulence
Understanding the formation of stars in galaxies is central to much of modern
astrophysics. For several decades it has been thought that stellar birth is
primarily controlled by the interplay between gravity and magnetostatic
support, modulated by ambipolar diffusion. Recently, however, both
observational and numerical work has begun to suggest that support by
supersonic turbulence rather than magnetic fields controls star formation. In
this review we outline a new theory of star formation relying on the control by
turbulence. We demonstrate that although supersonic turbulence can provide
global support, it nevertheless produces density enhancements that allow local
collapse. Inefficient, isolated star formation is a hallmark of turbulent
support, while efficient, clustered star formation occurs in its absence. The
consequences of this theory are then explored for both local star formation and
galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28
figures, in pres
Relative weathering intensity of calcite versus dolomite in carbonate‐bearing temperate zone watersheds: Carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94958/1/ggge940.pd
Platelets of patients with chronic kidney disease demonstrate deficient platelet reactivity in vitro
<p>Abstract</p> <p>Background</p> <p>In patients with chronic kidney disease studies focusing on platelet function and properties often are non-conclusive whereas only few studies use functional platelet tests. In this study we evaluated a recently developed functional flow cytometry based assay for the analysis of platelet function in chronic kidney disease.</p> <p>Methods</p> <p>Platelet reactivity was measured using flow cytometric analysis. Platelets in whole blood were triggered with different concentrations of agonists (TRAP, ADP, CRP). Platelet activation was quantified with staining for P-selectin, measuring the mean fluorescence intensity. Area under the curve and the concentration of half-maximal response were determined.</p> <p>Results</p> <p>We studied 23 patients with chronic kidney disease (9 patients with cardiorenal failure and 14 patients with end stage renal disease) and 19 healthy controls. Expression of P-selectin on the platelet surface measured as mean fluorescence intensity was significantly less in chronic kidney disease patients compared to controls after maximal stimulation with TRAP (9.7 (7.9-10.8) vs. 11.4 (9.2-12.2), P = 0.032), ADP (1.6 (1.2-2.1) vs. 2.6 (1.9-3.5), P = 0.002) and CRP (9.2 (8.5-10.8) vs. 11.5 (9.5-12.9), P = 0.004). Also the area under the curve was significantly different. There was no significant difference in half-maximal response between both groups.</p> <p>Conclusion</p> <p>In this study we found that patients with chronic kidney disease show reduced platelet reactivity in response of ADP, TRAP and CRP compared to controls. These results contribute to our understanding of the aberrant platelet function observed in patients with chronic kidney disease and emphasize the significance of using functional whole blood platelet activation assays.</p
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
River research and applications across borders
Rivers flow across national borders, unfettered by political distinctions, and the ecological health of rivers is closely linked to their degree of connectivity. River research today is more global than it has ever been, but we show that river research, engineering, and management still operate within homegrown local paradigms. As a basis for this discussion, we studied the citation networks surrounding the most widely cited papers in our field, assessing the degree to which researchers have collaborated across geographical boundaries and fully drawn from the international literature. Despite gains over time, our field remains surprisingly and pervasively provincial. The likely explanation for provincial bias is that researchers are generally more familiar and comfortable with their own research methods, sites, and agendas. However, local focus has tangible consequences. For example, contrasting paradigms and differing approaches to river restoration and to flood-risk management show that opportunities are lost when we fail to learn from the successes and failures of other regions. As Sharp and Leshner (2014; p. 579) have argued, "the search for solutions needs to draw upon the talents and innovative ideas of scientists, engineers, and societal leaders worldwide to overcome traditional and nationalistic paradigms that have so far been inadequate to meeting these challenges.
Risk of Esophageal Adenocarcinoma Decreases With Height, Based on Consortium Analysis and Confirmed by Mendelian Randomization
Background & Aims
Risks for some cancers increase with height. We investigated the relationship between height and risk of esophageal adenocarcinoma (EAC) and its precursor, Barrett's esophagus (BE).
Methods
We analyzed epidemiologic and genome-wide genomic data from individuals of European ancestry in the Barrett's and Esophageal Adenocarcinoma Consortium, from 999 cases of EAC, 2061 cases of BE, and 2168 population controls. Multivariable logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for associations between height and risks of EAC and BE. We performed a Mendelian randomization analysis to estimate an unconfounded effect of height on EAC and BE using a genetic risk score derived from 243 genetic variants associated with height as an instrumental variable.
Results
Height was associated inversely with EAC (per 10-cm increase in height: OR, 0.70; 95% CI, 0.62–0.79 for men and OR, 0.57; 95% CI 0.40–0.80 for women) and BE (per 10-cm increase in height: OR, 0.69; 95% CI, 0.62–0.77 for men and OR, 0.61; 95% CI, 0.48–0.77 for women). The risk estimates were consistent across strata of age, education level, smoking, gastroesophageal reflux symptoms, body mass index, and weight. Mendelian randomization analysis yielded results quantitatively similar to those from the conventional epidemiologic analysis.
Conclusions
Height is associated inversely with risks of EAC and BE. Results from the Mendelian randomization study showed that the inverse association observed did not result from confounding factors. Mechanistic studies of the effect of height on EAC and BE are warranted; height could have utility in clinical risk stratification
- …