71 research outputs found

    Sarcopenic Dysphagia and Simplified Rehabilitation Nutrition Care Process: An Update

    Get PDF
    Sarcopenic dysphagia is characterized by weakness of swallowing-related muscles associated with whole-body sarcopenia. As the number of patients with sarcopenia increases with the aging of the world, the number of patients with sarcopenic dysphagia is also increasing. The prevalence of sarcopenic dysphagia is high in the institutionalized older people and in patients hospitalized for pneumonia with dysphagia in acute care hospitals. Prevention, early detection and intervention of sarcopenic dysphagia with rehabilitation nutrition are essential. The diagnosis of sarcopenic dysphagia is based on skeletal and swallowing muscle strength and muscle mass. A reliable and validated diagnostic algorithm for sarcopenic dysphagia is used. Sarcopenic dysphagia is associated with malnutrition, which leads to mortality and Activities of Daily Living (ADL) decline. The rehabilitation nutrition approach improves swallowing function, nutrition status, and ADL. A combination of aggressive nutrition therapy to improve nutrition status, dysphagia rehabilitation, physical therapy, and other interventions can be effective for sarcopenic dysphagia. The rehabilitation nutrition care process is used to assess and problem solve the patient’s pathology, sarcopenia, and nutrition status. The simplified rehabilitation nutrition care process consists of a nutrition cycle and a rehabilitation cycle, each with five steps: assessment, diagnosis, goal setting, intervention, and monitoring. Nutrition professionals and teams implement the nutrition cycle. Rehabilitation professionals and teams implement the rehabilitation cycle. Both cycles should be done simultaneously. The nutrition diagnosis of undernutrition, overnutrition/obesity, sarcopenia, and goal setting of rehabilitation and body weight are implemented collaboratively

    Evaluation of a communication skills seminar for students in a Japanese medical school: a non-randomized controlled study

    Get PDF
    BACKGROUND: Little data exist for the effectiveness of communication skills teaching for medical students in non-English speaking countries. We conducted a non-randomized controlled study to examine if a short intensive seminar for Japanese medical students had any impact on communication skills with patients. METHODS: Throughout the academic year 2001–2002, a total of 105 fifth-year students (18 groups of 5 to 7 students) participated, one group at a time, in a two-day, small group seminar on medical interviewing. Half way through the year, a five-station objective structured clinical examination (OSCE) was conducted for all fifth-year students. We videotaped all the students' interaction with a standardized patient in one OSCE station that was focused on communication skills. Two independent observers rated the videotapes of 50 students who had attended the seminar and 47 who had not. Sixteen core communication skills were measured. Disagreements between raters were resolved by a third observer's rating. RESULTS: There was a statistically significant difference in proportions of students who were judged as 'acceptable' in one particular skill related to understanding patient's perspectives: asking how the illness or problems affected the patient's life, (53% in the experimental group and 30% in the control group, p = .02). No differences were observed in the other 15 core communication skills, although there was a trend for improvement in the skill for asking the patient's ideas about the illness or problems (60% vs. 40%, p = .054) and one of the relationship building skills; being attentive and empathic nonverbally (87% vs. 72%, p = .064). CONCLUSION: The results of this study suggest that a short, intensive small group seminar for Japanese medical students may have had a short-term impact on specific communication skills, pertaining to understanding patient's perspectives

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Search for light top squark pair production in final states with leptons and b -jets with the ATLAS detector in s=7\sqrt{s}=7 TeV proton-proton collisions

    Get PDF
    The results of a search for pair production of light top squarks are presented, using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collisions collected with the ATLAS detector at the Large Hadron Collider. This search targets top squarks with masses similar to, or lighter than, the top quark mass. Final states containing exclusively one or two leptons (e, mu), large missing transverse momentum, light-jets and b-jets are used to reconstruct the top squark pair system. Global mass scale variables are used to separate the signal from a large ttbar background. No excess over the Standard Model expectations is found. The results are interpreted in the framework of the Minimal Supersymmetric Standard Model, assuming the top squark decays exclusively to a chargino and a b-quark. Light top squarks with masses between 123-167 GeV are excluded for neutralino masses around 55 GeV

    DECIGO and DECIGO pathfinder

    Full text link
    corecore