1,456 research outputs found
Tunable energy transfer between dipolar-coupled magnetic disks by stimulated vortex gyration
A wide variety of coupled harmonic oscillators exist in nature1. Coupling
between different oscillators allows for the possibility of mutual energy
transfer between them2-4 and the information-signal propagation5,6. Low-energy
input signals and their transport with low-energy dissipation are the key
technical factors in the design of information processing devices7. Here,
utilizing the concept of coupled oscillators, we experimentally demonstrated a
robust new mechanism for energy transfer between spatially separated
dipolar-coupled magnetic disks - stimulated vortex gyration. Direct
experimental evidence was obtained by time-resolved soft X-ray microscopy. The
rate of energy transfer from one disk to the other was deduced from the two
normal modes' frequency splitting caused by dipolar interaction. This mechanism
provides the advantages of tunable energy transfer rate, low-power input
signal, and low-energy dissipation for magnetic elements with negligible
damping. Coupled vortex-state disks are promising candidates for
information-signal processing devices that operate above room temperature
Catalytic Supercritical Water Gasification of Refuse Derived Fuel for High Energy Content Fuel Gas
Refuse derived fuel (RDF) was processed using hydrothermal gasification at high temperature to obtain a high energy content fuel gas. Supercritical water gasification of RDF was conducted at a temperature of 500 °C and 29 MPa pressure and also in the presence of a solid RuO2/γ-Al2O3 catalyst. The effect of residence time (0, 30 and 60 min) and different ruthenium loadings (5, 10, 20 wt% RuO2/γ-Al2O3) were investigated. Up to 93 % carbon gasification efficiency was achieved in the presence of 20 wt% RuO2/γ-Al2O3 catalyst. The fuel gas with the highest energy value of 22.5 MJ Nm−3 was produced with the 5 wt% RuO2/γ-Al2O3 catalyst after 30 min reaction time. The results were compared with the use of NaOH as a homogeneous catalyst. When NaOH was used, the maximum gross calorific value of the product gas was 32.4 MJ Nm−3 at 60 min reaction time as a result of CO2 fixation. High yields of H2 and CH4 were obtained in the presence of both the NaOH and RuO2/γ-Al2O3 catalysts
The Relationship Between Alcohol Symptoms and Consumption Among Older Drinkers
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66310/1/j.1530-0277.1996.tb01104.x.pd
Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV
We search for pair production of supersymmetric top quarks (~t_1), followed
by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using
322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II
detector at Fermilab. Two candidate events pass our final selection criteria,
consistent with the standard model expectation. We set upper limits on the
cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass
m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153
GeV/c^2. The limits are also applicable to the case of a third generation
scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure
Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron
We study the underlying event in proton-antiproton collisions by examining
the behavior of charged particles (transverse momentum pT > 0.5 GeV/c,
pseudorapidity |\eta| < 1) produced in association with large transverse
momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the
Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV
center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan
production) or the leading jet (in high-pT jet production) in each event to
define three regions of \eta-\phi space; toward, away, and transverse, where
\phi is the azimuthal scattering angle. For Drell-Yan production (excluding the
leptons) both the toward and transverse regions are very sensitive to the
underlying event. In high-pT jet production the transverse region is very
sensitive to the underlying event and is separated into a MAX and MIN
transverse region, which helps separate the hard component (initial and
final-state radiation) from the beam-beam remnant and multiple parton
interaction components of the scattering. The data are corrected to the
particle level to remove detector effects and are then compared with several
QCD Monte-Carlo models. The goal of this analysis is to provide data that can
be used to test and improve the QCD Monte-Carlo models of the underlying event
that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.
Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays
We measure the mean lifetime, tau=2/(Gamma_L+Gamma_H), and the width
difference, DeltaGamma=Gamma_L-Gamma_H, of the light and heavy mass eigenstates
of the B0s meson, B0sL and B0sH, in B0s -> J/psi phi decays using 1.7 fb^-1 of
data collected with the CDF II detector at the Fermilab Tevatron ppbar
collider. Assuming CP conservation, a good approximation for the B0s system in
the Standard Model, we obtain DeltaGamma = 0.076^+0.059_-0.063 (stat.) +- 0.006
(syst.) ps^-1 and tau = 1.52 +- 0.04 (stat.) +- 0.02 (syst.) ps, the most
precise measurements to date. Our constraints on the weak phase and DeltaGamma
are consistent with CP conservation.
Dedicated to the memory of our dear friend and colleague, Michael P. Schmid
Limits on Anomalous Triple Gauge Couplings in ppbar Collisions at sqrt{s}=1.96 TeV
We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ
boson production. The boson pairs are produced in ppbar collisions at
sqrt{s}=1.96 TeV, and the data sample corresponds to 350 pb-1 of integrated
luminosity collected with the CDF II detector at the Fermilab Tevatron. In this
search one W decays to leptons, and the other boson (W or Z) decays
hadronically. Combining with a previously published CDF measurement of Wgamma
boson production yields ATGC limits of -0.18 < lambda < 0.17 and -0.46 < Delta
kappa < 0.39 at the 95% confidence level, using a cut-off scale Lambda=1.5 TeV.Comment: 7 pages, 3 figures. Submitted to Phys. Rev.
Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV
Reconstructable final state kinematics and charge assignment in the reaction
ppbar->ttbar allows tests of discrete strong interaction symmetries at high
energy. We define frame dependent forward-backward asymmetries for the outgoing
top quark in both the ppbar and ttbar rest frames, correct for experimental
distortions, and derive values at the parton-level. Using 1.9/fb of ppbar
collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the
Fermilab Tevatron, we measure forward-backward top quark production asymmetries
in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} =
0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references
and change of tex
Measurement of the Production Cross Section and Search for Anomalous and Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the boson
pair production cross section and most sensitive test of anomalous
and couplings in collisions at a center-of-mass energy of 1.96
TeV. The candidates are reconstructed from decays containing two charged
leptons and two neutrinos, where the charged leptons are either electrons or
muons. Using data collected by the CDF II detector from 3.6 fb of
integrated luminosity, a total of 654 candidate events are observed with an
expected background contribution of events. The measured total
cross section is pb, which is in good agreement
with the standard model prediction. The same data sample is used to place
constraints on anomalous and couplings.Comment: submitted to Phys. Rev. Let
- …