142 research outputs found
Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory
Using nonequilibrium perturbation theory, we investigate the nonlinear
transport through a quantum dot in the Kondo regime in the presence of a
magnetic field. We calculate the leading logarithmic corrections to the local
magnetization and the differential conductance, which are characteristic of the
Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we
determine the nonequilibrium magnetization on the dot and show that the
application of both a finite bias voltage and a magnetic field induces a novel
structure of logarithmic corrections not present in equilibrium. These
corrections lead to more pronounced features in the conductance, and their form
calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
Reply to commentary by R Duggleby (2019)
Duggleby (2018) has made a numerical analysis of some aspects of the wide range of phenomena we reviewed in Steele et al. (2018) and asserted " .that panspermia as proposed by Steele et al. (2018) is extremely implausible.” It seems to us that Duggleby has based his viewpoint on a quite narrow and specific model of Panspermia which he supposes to be active in the cosmos. Here we address both his conclusions and his numerical analysis. Our response therefore will be at two levels, his specific analysis and his general conclusions. In the specific section below we show that while Duggleby's numerical analysis appears in part correct it is, in the final analysis, quite irrelevant to Cosmic Panspermia. In the general response which follows we address his unsupported conclusion throughout his critique, namely that … " none of the examples mentioned by Steele et al. (2018) is decisive enough to allow no other explanation.
Reply to editorial and commentaries on Steele, Al-Mufti, Augustyn, Chandrajith, Coghlan, Coulson et al. (2018) "Cause of Cambrian explosion - Terrestrial or cosmic?"
No abstract availabl
International Lower Limb Collaborative (INTELLECT) study : a multicentre, international retrospective audit of lower extremity open fractures
Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury
A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury
Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes
- …
