241 research outputs found

    Charge Storage Effect in a Trilayer Structure Comprising Germanium Nanocrystals

    Get PDF
    A metal-insulator-semiconductor (MIS) device with a trilayer insulator structure consisting of sputtered SiO₂ (~50nm)/evaporated pure germanium (Ge) layer (2.4nm)/rapid thermal oxide (~5nm) was fabricated on a p-type Si substrate. The MIS device was rapid thermal annealed at 1000°C. Capacitance-voltage (C-V) measurements showed that, after rapid thermal annealing at 1000°C for 300s in Ar, the trilayer device exhibited charge storage property. The charge storage effect was not observed in a device with a bilayer structure without the Ge middle layer. With increasing rapid thermal annealing time from 0 to 400s, the width of the C-V hysteresis of the trilayer device increased significantly from 1.5V to ~11V, indicating that the charge storage capability was enhanced with increasing annealing time. High-resolution transmission electron microscopy results confirmed that with increasing annealing time, the 2.4nm amorphous middle Ge layer crystallized gradually. More Ge nanocrystals were formed and the crystallinity of the Ge layer improved as the annealing time was increased. When the measurement temperature was increased from –50°C to 150°C, the width of the hysteresis of the MIS device reduced from ~10V to ~6V. This means that the charge storage capability of the trilayer structure decreases with increasing measurement temperature. This is due to the fact that the leakage current in the trilayer structure increases with increasing measurement temperature.Singapore-MIT Alliance (SMA

    Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface

    Full text link
    Electromigration-induced flow of islands and voids on the Cu(001) surface is studied at the atomic scale. The basic drift mechanisms are identified using a complete set of energy barriers for adatom hopping on the Cu(001) surface, combined with kinetic Monte Carlo simulations. The energy barriers are calculated by the embedded atom method, and parameterized using a simple model. The dependence of the flow on the temperature, the size of the clusters, and the strength of the applied field is obtained. For both islands and voids it is found that edge diffusion is the dominant mass-transport mechanism. The rate limiting steps are identified. For both islands and voids they involve detachment of atoms from corners into the adjacent edge. The energy barriers for these moves are found to be in good agreement with the activation energy for island/void drift obtained from Arrhenius analysis of the simulation results. The relevance of the results to other FCC(001) metal surfaces and their experimental implications are discussed.Comment: 9 pages, 13 ps figure

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Very Singular Diffusion Equations-Second and Fourth Order Problems

    Get PDF
    This paper studies singular diffusion equations whose diffusion effect is so strong that the speed of evolution becomes a nonlocal quantity. Typical examples include the total variation flow as well as crystalline flow which are formally of second order. This paper includes fourth order models which are less studied compared with second order models. A typical example of this model is an H−1 gradient flow of total variation. It turns out that such a flow is quite different from the second order total variation flow. For example, we prove that the solution may instantaneously develop jump discontinuity for the fourth order total variation flow by giving an explicit example

    Integrative multi-omics analyses of barley rootzones under salinity stress reveal two distinctive salt tolerance mechanisms

    Get PDF
    Mechanisms underlying rootzone-localised responses to salinity during early stage of barley development remains elusive. Here, we detected the multi-root-omes (transcriptomes, metabolomes, lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) which maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEG) and abundant metabolites (DAM) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, maturation Z3). Based on pathway over-representation of the DEG and DAM, phenylpropanoid biosynthesis is the most statistically enriched biological pathways among all salinity responses observed. Together with histological evidence, an intense salt-induced lignin impregnation was found only at stelic cell wall of Clipper Z2, comparing to a unique elevation of suberin deposition across Sahara Z2. This suggests two differential salt-induced modulations of apoplastic flow between the genotypes. Based on global correlation network of the DEG and DAM, callose deposition that potentially adjusted symplastic flow in roots was almost independent of salinity in rootzones of Clipper, and was markedly decreased in Sahara. Taken together, we propose two distinctive salt tolerance mechanisms in Clipper (growth-sustaining) and Sahara (salt-shielding), providing important clues for improving crop plasticity to cope with deteriorating global soil salinization

    RTD response time estimation in the presence of temperature variations and its application to semiconductor manufacturing

    No full text
    10.1109/TIM.2007.910097IEEE Transactions on Instrumentation and Measurement572406-412IEIM
    corecore