175 research outputs found
Low cost carriers in the Middle East and North Africa: Prospects and strategies
We examine socio-economic indicators relevant to âlow cost carriersâ (LCCs) in the Middle East and North Africa
(MENA) and review the evolution of air transport liberalization and air service agreements in the region. We
analyse the business strategies of MENA-based LCCs and using a benchmarking methodology, we compare the
business strategy of Air Arabia Group with those of dominant European LCCs EasyJet and Ryanair. Our economic
development indicators suggest future potential for LCC growth in Iran and Saudi Arabia while other MENA countries
continue to face challenges. The lack of success in regional liberalization in air transport is restricting LCC
growth although individual MENA countries have or will beneïŹt from âopen skiesâ agreements. MENA-based
LCCs while retaining some characteristics of the LCC model also deviate in signiïŹcant ways. Benchmarking analysis
shows that Air Arabia's business strategy represents a departure from the business strategies that have been
most successful in Europe
Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro
Objectives:
Clostridioides difficile infection (CDI) is a considerable healthcare and economic burden worldwide. Faecal microbial transplant remains the most effective treatment for CDI, but is not at the present time the recommended standard of care. We hereby investigate which factors derived from a healthy gut microbiome might constitute the colonisation resistance barrier (CRB) in the gut, inhibiting CDI.
Method:
CRB drivers pH, short chain fatty acid (SCFA), and oxidation-reduction potential (ORP) were investigated in vitro using C. difficile NAP1/BI/027. Readouts for inhibitory mechanisms included germination, growth, toxin production and virulence gene expression. pH ranges (3 â 7.6), SCFA concentrations (25 â 200mM) and ORP (-300 - +200mV) were manipulated in brain heart infusion broth cultures under anaerobic conditions to assess the inhibitory action of these mechanisms.
Results:
<pH 5.3 completely inhibited C. difficile growth to OD of 0.019 vs. 1.19 for control pH 7.5. Toxin production was reduced to 25 units vs 3125 units for pH 7.6 (1 in 5 dilutions). Virulence gene expression reduced by 150 fold compared with pH 7.6 (p<0.05). Germination and proliferation of spores below pH 6.13 yielded an average OD of 0.006 vs. 0.99 for control. SCFA were potent regulators of toxin production at 25mM and above (p<0.05). Acetate significantly inhibited toxin production to 25 units independent of OD (0.8733) vs. control (OD 0.6 and toxin titer 3125) (p<0.05). ORP did not impact C. difficile growth.
Conclusion:
This study highlights the critical role that pH has in the CRB, regulating CDI in vitro and that SCFA can regulate C. difficile function independent of pH
Exact-exchange density-functional calculations for noble-gas solids
The electronic structure of noble-gas solids is calculated within density
functional theory's exact-exchange method (EXX) and compared with the results
from the local-density approximation (LDA). It is shown that the EXX method
does not reproduce the fundamental energy gaps as well as has been reported for
semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials
reproduce about 80 % of the experimental optical gaps. The structural
properties of noble-gas solids are described by the EXX method as poorly as by
the LDA one. This is due to missing Van der Waals interactions in both, LDA and
EXX functionals.Comment: 4 Fig
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
A history of high-power laser research and development in the United Kingdom
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types
Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis
- âŠ