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SUMMARY

Hotspotmutations in splicing factor genes have been
recently reported at high frequency in hematological
malignancies, suggesting the importance of RNA
splicing in cancer. We analyzed whole-exome
sequencing data across 33 tumor types in The
Cancer Genome Atlas (TCGA), and we identified
119 splicing factor genes with significant non-silent
mutation patterns, including mutation over-repre-
sentation, recurrent loss of function (tumor suppres-
sor-like), or hotspot mutation profile (oncogene-like).
Furthermore, RNA sequencing analysis revealed
altered splicing events associated with selected
splicing factor mutations. In addition, we were able
to identify common gene pathway profiles associ-
ated with the presence of these mutations. Our
analysis suggests that somatic alteration of genes
involved in the RNA-splicing process is common
in cancer and may represent an underappreciated
hallmark of tumorigenesis.
INTRODUCTION

Alternative pre-mRNA splicing is a major source of transcript di-

versity in mammalian cells and is orchestrated by a megadalton

complex called the spliceosome (Papasaikas and Valcárcel,

2016). The major U2-type spliceosome constitutes five small nu-

clear ribonucleoprotein (snRNP) complexes (U1, U2, U4, U5, and

U6) and >150 proteins, while the minor U12-type spliceosome

contains five snRNPs and an unknown number of proteins,

many of which have analogous genes in the U2 spliceosome.

In a dynamic process, pre-mRNA non-coding intron sequences

are removed at specific splice sites, leaving coding exons that

are ligated to form mature mRNA. These introns and exons

contain sequences that are recognized by the core splicing ma-

chinery and are essential for recruitment and activation of the

splicing process. Additionally, there are cis silencer and

enhancer sequences that are recognized by accessory factors,

e.g., heterogeneous nuclear ribonucleoproteins (hnRNPs) and

serine/arginine-rich (SR) proteins, and these factors are respon-
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sible for splicing regulation (Wang et al., 2008). Recurrent so-

matic mutations of the splicing factor genes SF3B1, SRSF2,

U2AF1, and ZRSR2 were first discovered through whole-exome

sequencing in myelodysplastic syndrome (MDS) (Yoshida et al.,

2011), and they were later reported in other hematological malig-

nancies as well as solid tumors (Makishima et al., 2012; Papaem-

manuil et al., 2013; Haferlach et al., 2014; Lindsley et al., 2015;

Jeromin et al., 2014; Landau et al., 2015; Patnaik et al., 2013).

Differential splicing analysis using RNA sequencing data from

patient samples and pre-clinical models revealed that these so-

matic mutations induced transcriptome-wide splicing alterations

(Ferreira et al., 2014; DeBoever et al., 2015; Darman et al., 2015;

Zhang et al., 2015; Kim et al., 2015; Okeyo-Owuor et al., 2015;

Przychodzen et al., 2013; Madan et al., 2015).

The confluence of both DNA and RNA sequencing in TCGA

provide a unique opportunity to interrogate splicing deregulation

due to somatic mutation across human cancers. Although sys-

tematic analyses of mutations, copy number, and gene expres-

sion patterns of RNA-binding proteins (RBPs) have recently been

reported (Sebestyén et al., 2016; Neelamraju et al., 2018), here

we focus on somatic mutations in known splicing factors and

alternative splicing events associated with selected mutations

across 33 tumor types and more than 10,000 samples. Further-

more, we compare how thesemutations affect gene pathways in

the affected lineages, and we examine their potential impact on

tumorigenesis.
RESULTS

119 Splicing Factor Genes Carry Recurrent Mutations in
Hematological Cancers and Solid Tumors
We compiled and curated a catalog of 404 splicing factor genes

(Table S1; STAR Methods), and we prioritized genes with likely

driver mutations using two complementary approaches (Fig-

ure 1A). The first approach, MutSigCV (Lawrence et al., 2013),

ranks genes by statistical significance of somatic mutation per

cohort adjusted by mutation background of tumor type, gene

size, replication time, and gene expression levels. We identified

68 genes as significantly mutated in at least one cohort

(q value% 0.1). The second approach, a ratiometric method (Vo-

gelstein et al., 2013), identifies likely oncogenes and tumor sup-

pressors based on the observation that oncogenes are recur-

rently mutated at the same amino acid position (hotspot, HS),
creativecommons.org/licenses/by-nc-nd/4.0/).
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whereas tumor suppressor genes are mutated through loss-of-

function (LoF) mutations throughout their length. Using this

method, we identified 77 genes as either likely oncogene (OG)

or tumor suppressor gene (TSG) using either individual tumor co-

horts (72 genes) or a pancan cohort of all samples (5 genes).

Similar results were also obtained by a recently published ratio-

metric method, 20/20+ (Tokheim et al., 2016) (Figure S1C).

Among the 77 genes, 27 were also identified by MutSigCV, while

50 were uniquely identified by this approach only. Finally, ZRSR2

was added as it has been previously identified in hematological

tumors as significantly mutated, though it did not meet our driver

gene criteria in TCGA. Together, we prioritized 119 genes as

likely harboring driver mutations (Table S1).

We mapped these 119 genes to known U2 and U12 spliceo-

some complexes and their associated proteins (Figure 1B;

Table S1A). Among components of the U2 spliceosome, we

observed that driver mutations primarily impacted proteins

involved in the early stages of splicing catalysis, frompre-catalytic

(complex A) to the first catalytic step (complex C). Proteins asso-

ciated with the U2 snRNP were especially well-represented

among hotspot mutants, including SF3B1, U2AF1, and PHF5A.

In the U12-type spliceosome, prior reports have described

ZRSR2 LoFmutations, primarily inMDS and secondary leukemia,

that are associated with the retention of U12 spliceosome introns

(Yoshida et al., 2011; Papaemmanuil et al., 2013; Haferlach et al.,

2014; Lindsley et al., 2015;Madan et al., 2015). Here we identified

3 recurrently mutated genes (SNRNP35, SNRNP48, and ZCRB1)

that are also part of the U12 spliceosome. The recurrent hotspot

mutations in SNRNP48 and ZCRB1 in acute myeloid leukemia

(LAML) indicate that U12-splicing deregulation in hematological

malignancies are more prevalent than previously reported.

Globally, the non-silent mutation rate of individual splicing fac-

tor genes is low, ranging from 0.16% (PHF5A) to 3.7% (SPEN)

(Figure S1A; Table S1B); however, we observed a number of

genes with exceptionally high mutation rates in otherwise infre-

quently mutated tumors (e.g., SF3B1 in uveal melanoma [UVM]

and FUBP1 in low-grade glioma [LGG]) (Figure S1A). Segre-

gating LoF and hotspot mutation rates in each gene by tumor

type revealed genes with high percentage of HS or LoF muta-

tions across multiple tumor types (Figure 1D), and we found

that LoF mutations are much more common than hotspot muta-

tions (Figure 1C). Overall, we observed a significant linear rela-

tionship between the number of samples with likely splicing fac-

tor driver mutations and the log10 mutation rate per sample in the

corresponding cohort (p = 4.02e�11) (Figure S1B). Bladder car-

cinoma (BLCA), skin cutaneous melanoma (SKCM), and lung

adenocarcinoma (LUAD) were most likely to harbor non-silent
Figure 1. 119 Splicing Factor Genes Are Mutated across All Tumor Co

(A) Prioritization of splicing factor genes with likely driver mutations.

(B) Hotspot (HS)- (red) and loss-of-function (LoF)- (blue) mutated genes in the p

mutation frequency (Table S1) is listed next to each gene.

(C) Genes are plotted as %hotspot or %LoF mutations for non-silent mutations a

colored blue.

(D) Heatmap view of %hotspot (bottom orange panel) or %LoF mutations (top blu

hotspot mutation high to low and%LoFmutation low to high from left to right. Tum

For comparison, the fraction of samples with non-silent mutations in any of the 11

non-silent mutation in each likely driver gene is given in the top bar chart.

See also Figure S1 and Table S1.
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mutations in any putative driver splicing factor, at more than

60% of patients in each cohort. Of these tumor types, BLCA

and UVM had significantly higher rates of splicing factor driver

mutations than would be expected by chance (p = 0.01 and

0.03, respectively), suggesting that splicing deregulation is an

important hallmark for these tumors.

Due to the importance of splicing factor mutations in cancer,

we analyzed the transcriptomic consequences associated with

mutations with exceptional frequency in a single cohort and

with hotspot (SF3B1, U2AF1, and SRSF2) or LoF mutations

(RBM10 and FUBP1) in samples that were not associated with

hyper-mutator phenotypes (see the STAR Methods).

SF3B1 Hotspot Mutations Induce Aberrant Splicing
SF3B1 has been reported to be the most frequently mutated

splicing factor gene in hematological malignancies and some

solid tumors, such as adenoid cystic carcinoma (Martelotto

et al., 2015), breast cancer (Cancer Genome Atlas Network,

2012), pancreatic cancer (Biankin et al., 2012), and melanomas

(Martin et al., 2013; Cancer Genome Atlas Network, 2015; Hintz-

sche et al., 2017). It is a member of the U2 complex and, along

with SF3B3 and PHF5A, binds to the branch point nucleotide in

the pre-catalytic spliceosome (Yan et al., 2016). Here, in a global

survey of SF3B1 mutations pan-cancer, we found somatic hot-

spot mutations that appear to cluster in the C-terminal HEAT

repeatdomains (HDs)4–12 (Figures2Aand2B;TableS2).Wepre-

viously reported that hotspot mutations in HDs 4–8 display aber-

rant splicing events enriched with alternative 30 splice sites (ss),

likely as a result of reduced branchpoint fidelity (Darman et al.,

2015). Here we also uncovered hotspot mutations in HDs 9–12,

including p.L833 (HD 9) in LAML, p.E902 (HD 11) in BLCA, and

p.R957 (HD 12) in endometrial cancer (UCEC) samples. These

hotspots appeared to be present mainly in these 3 tumor types,

resembling previous observations of SF3B1mutations in position

p.R625, which are primarily observed in melanomas.

We observed that overall the occurrence of hotspot mutations

in SF3B1 follows a specific periodicity of �40 amino acids, sug-

gesting a functional role for residues at these positions. Interest-

ingly, the majority of these positions are located at the edge of

the HEAT repeat helices of the SF3B1 protein structure (Fig-

ure 2B) (Yan et al., 2016; Cretu et al., 2016), suggesting they

are important for interactions with RNA or protein or for the

conformational flexibility of this super-helical domain. Previously

discovered hotspot mutations cluster in HDs 4–8 and near the

pre-mRNA-binding region, however, the hotspot mutations in

HDs 9–12 are located away from this region, raising the possibil-

ity they might induce unique splicing abnormalities.
horts

ancan cohort are mapped to spliceosome complexes. The percent non-silent

cross TCGA (pancan). OG-like genes are colored red and TSG-like genes are

e panel) of all non-silent mutations per gene in each tumor cohort, sorted by%

or cohorts are sorted by averagemutation counts per sample (right green bar).

9 genes are shown as purple bars on the right. The number of samples with any



B

A

C

D

E

pre-mRNA

H1

H2

H3

H4

H5

H6 H7

H8

H9

H10

H11

H12

K700E G742D G740E/V

K741E/N/Q
D781E

L833F
E860K

E902G/K

R957Q

E862K

E622D/Q

K666E/N/T
N626D/H/Y

R625C/H

alt
3’ ss

alt
5’ ss

exon
inclusion

exon
skipping

intron
retention

intron
splicing

C
ou

nt
s

0
1
2
3
4
5
6
7
8

Lo
g 

ra
tio

 v
s 

co
nt

ro
l

−30 −20 −10 0 10 20 30

Distance to canonical AG (Log2 bp)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

D
en

si
ty

Mutations in HDs 4-8
Mutations in HDs 9-12

AG

canonical 3’ ss

Exon 

alternative 3’ss

alternative 5’ss

exon inclusion

exon skipping

intron retention

intron splicing

Distance of cryptic 3’ ss from canonical 3’ ss

0

10

20

30

40

SF3B1 hotspots - Darman et al. 
SF3B1 p.E902K - BLCA 

SF3B1 HEAT repeats (HDs) 4 5 6 7 8 9 10 11 12

62
0

62
2

62
5

62
6

63
3

66
2

66
3

66
5

66
6

66
8

66
9

69
3

69
7

69
9

70
0

70
8

71
1

72
2

72
7

73
6

74
0

74
1

74
2

74
6

76
3

76
5

77
5

78
1

78
7

79
0

80
2

80
5

81
2

81
4

81
5

83
1

83
3

83
5

84
3

84
7

86
0

86
2

87
3

87
6

89
4

89
7

89
8

89
9

90
2

90
3

90
6

90
7

91
6

91
7

91
9

92
1

92
2

92
3

93
0

93
5

93
6

94
6

95
7

95
9

96
5

BLCA
BRCA

LAML
LUAD

PAAD
SKCM

UCEC
UVM

other

Principal component 1

P
rin

ci
pa

l c
om

po
ne

nt
 2

SF3B1 WT
SF3B1 other
SF3B1 known hotspot
SF3B1 p.E902
SF3B1 p.R957

Figure 2. SF3B1 Hotspot Mutations across Multiple Tumor Types

(A) SF3B1 somatic mutations in HDs 4–12. Each dot represents a mutant sample colored by tumor cohort.

(B) SF3B1 hotspot mutations are mapped to the structure (PDB: 5GM6). Hotspots in HDs 4–8 are colored purple whereas hotspots in HDs 9–12 are colored gold.

(C) PCA stratifies samples from all solid tumor cohorts with SF3B1mutations using the expression of alternative 30 ss associated with SF3B1 hotspot mutations in
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(D) Differential splicing events associated with the BLCA-specific SF3B1 p.E902K mutation (corrected q-value < 0.05). Below each splicing event count, the PSI

log2 fold change of each individual event is detailed in a boxplot.

(E) Kernel density estimation plots showing the location of alternative 30 ss AGs with respect to canonical 30 ss AGs preferentially used by hotspot mutations in
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See also Figure S2 and Tables S2 and S3.
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To test this hypothesis, we used the z-normalized percent

spliced-in (PSI) of published alternative 30 ss associated with

SF3B1 hotspot mutations in HDs 4–8 (Darman et al., 2015) to

stratify all TCGA solid tumor patient samples using principal-

component analysis (PCA) (Figures 2C and S2A). We found

that samples with previously identified hotspot mutations in

HDs 4–8 were separated from SF3B1 wild-type (WT) samples,

as expected. Interestingly, samples with non-hotspot mutations

in SF3B1 or mutations in hotspots in HDs 9–12 including those

with mutations at position p.E902, were mostly clustered with

WT samples, indicating these mutations do not confer the

same altered splicing phenotype. We then performed differential

splicing analysis using RNA sequencing data directly comparing

samples in BLCA with SF3B1 p.E902K (n = 6) to tumors of the

same lineage, which were WT with respect to all splicing factor

genes (n = 40), resulting in 134 significantly altered junctions (Fig-

ure 2D; Table S3). Though splicing alterations as a result of

p.E902K also favored alternative 30 ss, the selected 30 ss were

preferentially located downstream of the 30 ss used in the WT,

while 30 ss promoted by previously observed hotspots were

mostly found upstream (Figure 2E). Similar to 30 ss promoted

by previously identified hotspot mutations, alternative 30 ss and

exon inclusion junctions promoted by SF3B1 p.E902K were

also able to stratify solid tumor samples distinctly from samples

with other SF3B1mutations (Figure S2B). The p.R957Qmutation

was found to be co-occurring with POLE mutations in UCEC

and, thus, in samples with very high mutation rates, reducing

the likelihood that this specific SF3B1 mutation is functionally

relevant. Other hotspots, such as p.L833, did not have enough

samples to allow further functional validation of potential splicing

alterations.

U2AF1 and SRSF2 Hotspot Mutations Confer Altered
Splicing Based on Sequence Features
Hotspot mutations ofU2AF1 have been reported to alter exon in-

clusion ratios in both leukemia and lung adenocarcinoma (Przy-

chodzen et al., 2013; Brooks et al., 2014). U2AF1, like SF3B1, is

associated with the U2 complex, and it is known to recognize the

30 dinucleotide AG; and, along with its partner U2AF2 that binds

to the 30 poly-Y tract, it promotes assembly of the pre-catalytic

spliceosome (Wu et al., 1999). Hotspot mutations at amino

acid positions p.S34 and p.Q157 are common in hematological

malignancies (Papaemmanuil et al., 2013; Lindsley et al., 2015)

and confer distinct splicing phenotypes (Ilagan et al., 2015),

affecting exon inclusion rates based on the nucleotide in the

�1 and +1 position relative to the 30 AG dinucleotide, respec-

tively. In TCGA, p.S34F/Y is the dominant hotspot mutation
Figure 3. U2AF1 and SRSF2 Mutations in the Pancan Cohort and Diffe

(A) U2AF1 somatic mutations mapped to amino acid positions and annotated do

(B) Differential splicing events associated with U2AF1 p.S34F/Y hotspot mutatio

count, the PSI log2 fold change of each individual event is detailed in a boxplot.

(C) Consensus sequence motifs for exons preferentially used by mutant U2AF1

(D)SRSF2 somaticmutationsmapped to amino acid positions and annotated dom

mutant sample colored by tumor cohort.

(E) Differential splicing events associated with SRSF2 in-frame deletions in UVM

(F) Tetramer (CCNG and GGNG) enrichment analysis comparing cassette exons p

average tetramer occurrence frequency for all exons in that class. Fold change s

See also Tables S2 and S3.
and is observed in multiple tumor types, most notably LAML,

LUAD, and UCEC (Figure 3A; Table S2). In contrast, U2AF1 mu-

tations at p.Q157 are rare and occur in only two samples.

To explore the functional impact of the U2AF1 p.S34 hotspot

mutations, we focused on LUAD and LAML, comparing mutant

samples (n = 15 LUAD and n = 6 LAML) to samples with no

known splicing factor gene mutation (n = 87 LUAD and n = 127

LAML). We observed an altered splicing phenotype dominated

by alternative 30 ss and cassette exon events, similar to results

obtained by Brooks et al. (2014) (Figure 3B; Table S3). Both

exon inclusion and exon skipping events were associated with

reduced usage of the 30 ss trinucleotide TAG, reflecting mutant

preference for either C or A in the �1 position. Interestingly, we

also observed the same motif selection for alternative 30 splicing
events, which had not been previously reported (Figure 3C).

SRSF2 is an auxiliary splicing factor that has been shown to

bind exonic pre-mRNA at specific motifs, where it acts as a

splicing enhancer. Both hotspot mutations and in-frame dele-

tions around position p.P95 have been reported, which increase

mutant SRSF2 affinity to the nucleotide sequence CCNG relative

to the sequence GGNG, resulting in altered exon inclusion

rates (Zhang et al., 2015; Kim et al., 2015). We found the majority

of SRSF2 somatic mutations in LAML (n = 20) (Figure 3D;

Table S2). Interestingly, we identified in-frame deletions in

UVM (n = 3), uncovering SRSF2 mutations in this disease. We

confirmed that deletions around p.P95 (n = 2) also induced

altered exon inclusion and exclusion as compared to WT sam-

ples (n = 20) (Figure 3E; Table S3), and we observed that

exons with increased inclusion rates displayed an enrichment

in CCNG versus GGNG sequence ratios (Figure 3F), consistent

with published results in hematological tumors.

RBM10 LoF Mutation Is Associated with Exon Inclusion
and a Corresponding Loss of Intron Retention Events in
LUAD and BLCA
RBM10 is an RNA-binding protein associated exclusively with

splicing repression (Wang et al., 2013), typically acting by bind-

ing in the intronic regions both up- and downstream of cassette

exons. It is most frequently mutated in LUAD (Cancer Genome

Atlas Research Network, 2014) and BLCA (Table S2), and the

mutations are mutually exclusive with other splicing factor

gene mutations (Figure 4A). RBM10 is located on the X chromo-

some, and its LoF mutations are the cause of the X-linked reces-

sive disorder TARP syndrome, affecting mainly males (Johnston

et al., 2010). We observed that RBM10 LoF mutations in LUAD

were also associated with the male gender (p = 0.002, Fisher’s

exact test), though this trend was not observed in BLCA, a
rential Splicing Associated with Hotspot Mutations

mains. Each dot represents a single mutant sample colored by tumor cohort.

ns in LUAD and LAML (corrected q-value < 0.05). Below each splicing event

versus WT U2AF1 across various alternative splicing events.

ains. Each bar (in-frame deletion) and dot (other mutations) represents a single-

.

referentially included or excluded by SRSF2mutant samples. Each value is the

ignificance was assessed using Student’s t test.
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disease that is found primarily inmales. In both diseases,RBM10

LoFmutations resulted in reduced mRNA expression (Figure 4B;

p value < 0.0001 in all comparisons, Student’s t test). Differential

splicing analyses comparing RBM10 LoF mutant tumors (n = 32)

and samples WT for all splicing factor genes (n = 87) identified

exon inclusion as the primary alternative splicing event in both

LUAD and BLCA (Figure 4C; Figure S3A; Tables S2 and S3).

This is consistent with earlier reports correlating the overexpres-

sion of RBM10 in HEK293 cells with exon skipping (Wang et al.,

2013).

We observed a significant overlap in exons included following

RBM10 loss in LUAD and exons previously reported to be both

excluded upon RBM10 overexpression and included following

knockdown (Figure S3B). Interestingly, RBM10 expression has

also been shown to correlate with retention of the introns flanking

the exons that are skipped due to its activity (Wang et al., 2013;

Figure S3C), and we observed the corresponding normal

splicing of these introns upon RBM10 loss in LUAD (Figure 4D).

The majority of genes with this pattern of altered splicing by

RBM10 LoF mutation were upregulated compared to RBM10

WT samples, suggesting that RBM10-mediated cassette exon

repression acts as an overall gene regulatory mechanism. We

also observed that some RBM10-regulated exons contained a

premature termination codon (PTC), which may cause the tran-

script to be targeted for nonsense-mediated decay (NMD) (Fig-

ure 4E). Genes predicted to contain these poison exons were

significantly more likely to be downregulated compared to other

genes containing RBM10 LoF mutation-induced inclusion

events (p = 1.07e�10, Kruskal H test).

FUBP1 LoF Mutation Is Associated with Cassette Exon
Events and Gene Downregulation in LGG
FUBP1 (Far upstream element-binding protein 1) was initially

described to regulate MYC through binding to its far-upstream

element (FUSE), and its overexpression can stimulate MYC

expression (Duncan et al., 1994; He et al., 2000). More recently,

FUBP1 has been described to bind to AT-rich exons andmediate

exon skipping via repression of splicing at the second step

reaction (Li et al., 2013). FUBP1 is located at chromosome 1p,

and its mutation co-occurs in a subset of glioma samples with

1p deletion. Co-deletion of chromosome 1p and 19q in glioma

(Brat et al., 2015), in particular oligodendroglioma, is a common

and early event (Jenkins et al., 2006). LoF mutations of FUBP1 in

the remaining allele would result in complete loss of FUBP1 in

diploid tumor cells. Indeed, we observed significant association

of FUBP1 LoF mutation with the oligodendroglioma histology

subtype, chromosome 1p deletion, and reduced FUBP1 gene

expression in mutant samples compared to WT samples with

1p deletion (Figure 5A).

To investigate the effects of FUBP1 LoFmutations on aberrant

splicing and gene expression, we defined our comparison

groups to be FUBP1 LoF mutation positive (n = 30) versus

WT (n = 31) under IDH1mutation and chromosome 1p/19q dele-
(D) Exon inclusion is often concomitant with intron splicing associated with RBM

(E) Exons promoted byRBM10 LoFmutation in LUADmay be predicted to contain

(blue).

See also Figure S3 and Tables S2 and S3.
tion-positive background (Figure 5A; Table S4). Differential

splicing analysis identified exon inclusion and exclusion asmajor

alternative splicing events (Figure 5B; Table S3). The FUBP1

RNA expression level and copy number in U87MG, a glioblas-

toma cell line, are similar to our control LGG patient group, offer-

ing an experimental setting to validate our analysis from patient

samples. We transfected U87MG cells with a pool of small

interfering RNAs (siRNAs) against FUBP1, and we performed

RNA sequencing. We first confirmed FUBP1 knockdown at

both protein (Figure 5C) and mRNA (67% depletion) levels.

Differential splicing analysis showed a similar distribution of

aberrant splicing events between transient FUBP1 knockdown

in U87MG cells and in FUBP1 LoF patients (Figure S4A;

Table S3). Though the overlap of significant splicing events

defined by the default q-value threshold of 0.05 was small

among events detected in genes that were expressed in both

patient samples and U87MG cells (11/155 events), splicing junc-

tions upregulated upon FUPB1 loss in patient samples showed

similar, though weaker, upregulation in U87MG (Figure 5D), con-

firming that the observed splicing changes were modulated by

the loss of FUBP1 (p value 4.38e�37, binomial test).

Mechanistically, FUBP1 has been shown to preferentially

bind to and inhibit AT-rich exons (Li et al., 2013), and to explore

this relationship we calculated the average AT content profiles

of the cassette exons and the flanking two exons. Compared

to background, we observed significantly higher AT content in

all 3 exons of exon-skipping events (p < 0.00015 in all

three comparisons, Student’s t test) (Figure S4B), an observa-

tion that was recapitulated in FUBP1 siRNA-treated U87MG

cells (p < 0.00019 in all three comparisons, Student’s t test)

(Figure S4C). Although not statistically significant, we also

observed that exons promoted by mutant samples (exon inclu-

sion events) had higher AT content near their 50 ends compared

to exons preferentially included by WT samples, perhaps

contributing to this phenotype. Overall, genes with alternative

splicing events of any type in patient samples (n = 163) were

significantly more likely to be downregulated compared to

background (n = 22,982; p = 4.7e�34, Kruskal H test) (Fig-

ure 5E), and, among these spliced genes, we observed that

those with events predicted to result in a transcript degraded

by the NMD pathway were downregulated further (p =

3.0e�4, Kruskal H test).

Given the proposed association between FUBP1 and MYC

expression regulation, we also evaluated the potential functional

consequences of FUBP1 LoF on MYC expression and down-

streamMYC signaling. Though we did not see significant reduc-

tion in MYC expression, there was a significant downregulation

of MYC target genes associated with FUBP1 LoF mutations

(Figure S4D; Table S5). We did not observe any MYC target

genes to be alternatively spliced, indicating this downregulation

was independent of FUBP1 functional splicing alterations. Inter-

estingly, we observed that MYC target gene changes were also

correlated in U87MG cells treated with siRNA against FUBP1
10 LoF mutation in LUAD.

PTCs (red), leading to reduced gene expression compared to those that do not
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(Figure S4E), confirming the independent association between

FUBP1 loss and MYC activity.

Driver Mutations in Splicing Factors Affect Cancer Cell-
Autonomous Pathways and Immune Infiltration
While extensive studies have characterized the splicing aberra-

tions associated with well-known splicing factor genemutations,

the understanding of how these mutations and splicing changes

contribute to selective advantages during tumorigenesis re-

mains unclear. Repeated observations of mutual exclusivity be-

tween different splicing factor driver mutations within the same

disease (Figure 4A) (Papaemmanuil et al., 2013; Haferlach

et al., 2014; Lindsley et al., 2015) suggest either their functional

convergence at the pathway level or that cells cannot tolerate

more than one splicing factor driver mutation. Hence, we con-

ducted systematic pathway analysis in tumor types harboring

driver mutations of the five genes (SF3B1, SRSF2, U2AF1,

RBM10, and FUBP1) with confirmed on-target splicing deregula-

tion (Figure 6A).

First, we performed gene set enrichment analysis (GSEA)

using 50 hallmark gene sets (Subramanian et al., 2005) by

comparing all mutant samples of each gene versus their WT

control group, which was carefully selected to remove con-

founding factors of tumor subtype and other splicing factor

gene mutations (Table S4). We then clustered all comparison

groups and hallmark gene sets using normalized enrichment

scores (NESs) (Figure S5A; Table S5). We observed that com-

parison groups generally clustered by tumor type or similar

cell lineage, rather than by specific splicing factor mutations.

For example, U2AF1 hotspot mutations in LUAD and RBM10

LoF mutations in epithelial tumors BLCA and LUAD group

together, while SF3B1 hotspot mutations in melanomas

SKCM and UVM and SRSF2 hotspot mutations in UVM group

together. Moreover, certain splicing factor mutations in spe-

cific tumor types tended to associate with broad downregula-

tion of cancer hallmark genes, such as SF3B1 hotspot muta-

tions in SKCM and UVM, whereas SF3B1 mutations in BRCA

and U2AF1 in LAML were associated with broad upregulation

of the same hallmarks. This prompted us to further identify

cancer hallmarks commonly regulated by different splicing

factor gene mutations in the same tumor type. Within cohorts,

hallmark gene sets related to immune response, cell cycle

checkpoint and DNA damage response (DDR), and meta-

bolism were associated with splicing factor mutations (Figures

S5B–S5E).

Since hallmark gene sets tend to be broadly defined, we also

conducted enrichment analysis using a set of custom gene sets

containing more specific gene signatures of the hallmark path-

ways uncovered above. In addition, we included spliceosome,

ribosome, proteasome, histone, and NMD pathway genes due

to their functional relevance to the splicing process (Table S6).
(C) Western blot of FUBP1 protein following transfection of FUBP1 siRNA pool o

(D) Log2 fold change of splice junctions identified in LGG patient samples (n = 15

(E) Letter-value plot showing that genes with alternative splicing events in LGG

ground (n = 22,982), and genes with splicing changes predicted to result in tran

compared to genes not predicted to be targeted (n = 94). The y axis data range

See also Figure S4 and Tables S3 and S4.
We then re-clustered comparison groups and gene sets using

the NESs of these curated gene sets (Figure 6B; Table S7). Strik-

ingly, this analysis revealed that gene sets can be clustered into

two large groups: group 1 (colored green in Figure 6B) contains

mostly cell-autonomous gene signatures of cell cycle, DDR, and

essential cellular machineries; and group 2 (colored purple in

Figure 6B) is composed of immune cell signatures. Among

cell-autonomous gene sets (Figures 6B and 6C), proteasome

genes were upregulated in multiple comparison groups. Ribo-

somal genes were strongly upregulated in SF3B1 hotspot mu-

tants within SKCM and both SF3B1 and SRSF2 mutants in

UVM, three subsets associated with general downregulation of

most gene sets. Cell cycle-related gene sets tended to be

more consistently upregulated in the splicing factor mutant sam-

ples of BLCA and LUAD (Figures 6B and 6C). Among immune cell

signatures, we found that certain subgroups, and in particular

FUBP1 in LGG, were associated with broad upregulation, sug-

gesting that these conditions harbor an increased immune infil-

tration. Alternatively, multiple T cell signatures were consistently

downregulated in SF3B1mutants of UVM as well as splicing fac-

tor mutant subsets of BLCA and LUAD, suggesting that splicing

factor mutations in these tumor types were associated with

fewer T cell infiltrates. To test the hypothesis that the low immune

cell enrichment scores are most likely due to less immune

infiltrates in the tumor microenvironment, we compared lung

adenocarcinoma cell lines with RBM10 LoF mutations to the

WT (Table S4), and we compared the result with that from

LUAD samples (Figure 6D). Three ribosome signatures were

significantly upregulated in both comparisons, and other cell-

autonomous signatures trended very similarly. However, we

observed that most immune cell signatures were only signifi-

cantly downregulated in patient tumor samples and not in cell

lines. Since cancer cell lines are devoid of immune cells, we infer

this is most likely due to reduced immune infiltrates in the tumor

microenvironment.

DISCUSSION

Using matched DNA and RNA sequencing, we have surveyed

33 tumor types for somatic mutations of over 400 splicing factor

genes, and we identified 119 with putative driver mutations. We

observed that the most common mutations are mutually exclu-

sive in each cohort, similar to prior hematological surveys (Pa-

paemmanuil et al., 2013; Haferlach et al., 2014; Landau et al.,

2015), and furthermore induce altered splicing, which is consis-

tent across tumor lineages. Though splicing factor gene muta-

tions were observed in all tumor types, we found that BLCA

and UVM had a significantly higher frequency of putative driver

mutations compared to other cohorts. Together, these results

suggest that splicing deregulation by somatic mutation in cancer

is broader than previously reported.
r non-targeting (NT) siRNA pool.

5) in U87MG (blue) compared to LGG patient samples (red).

patient samples (n = 163) are significantly downregulated compared to back-

scripts targeted by the NMD pathway (n = 79) are significantly downregulated

has been terminated at �5, +5 for clarity.
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Curiously, though hotspot mutations in SF3B1 were found in

several cohorts, we observed striking lineage specificity for

certain amino acid changes. Melanomas of both SKCM and

UVM strongly prefer p.R625C/H (21/33 non-silent mutations in

HDs 4–12), while BRCA strongly prefer p.K700E (10/18 non-

silent mutations in HDs 4–12), the samemost frequently mutated

position in hematological malignancies, and p.E902K is only

observed in BLCA. Lineage-specific hotspot mutations are likely

the outcome of the interplay of several contributing factors,

including nucleotide context mutability, gene-specific mutation

rate in the tumor type, lineage-specific interacting partner pro-

teins of a protein complex, and the mutational impact on cancer

genes and pathways to confer survival advantage in a particular

type of cancer. Deconvoluting these complex interactions will be

essential to understand the selective pressures underlying these

mutations.

How splicing factor gene mutations confer selective advan-

tage to tumor cells is an area of active study. Since splicing factor

gene mutations are likely to induce broad transcriptome

changes, it is possible these changes can include splicing of

oncogenes and tumor suppressors. In hematological malig-

nancies, it has been demonstrated that somatic hotspot muta-

tions in SRSF2 leads to mis-splicing and degradation of EZH2

(Kim et al., 2015), a gene known to be recurrently mutated in

those diseases. In another study, SF3B1 mutations in chronic

lymphocytic leukemia (CLL) were shown to lead to mis-splicing

and the production of a truncated form of ATM, another gene

frequently mutated in CLL (Ferreira et al., 2014). In both cases,

these splicing factor mutations have been shown to be mutually

exclusive with mutations of the aberrantly spliced target gene. In

our analysis, we observe previously reported altered splicing of

various cancer genes induced by splicing factor genemutations,

including EZH2 in LAML SRSF2 hotspot mutants and NUMB in

LUAD RBM10 LoF mutants (Bechara et al., 2013). We also find

additional unreported cancer gene alterations. For example,

SF3B1 hotspot mutations in BRCA are associated with mis-

splicing of CDH1, a gene with frequent LoF mutations in invasive

lobular breast cancer (Desmedt et al., 2016). In another example,

both RBM10 LoF and U2AF1 hotspot mutants in LUAD are

associated with TSC2 mis-splicing, a tumor suppressor of the

mTOR pathway (Krymskaya, 2003).

Given the multitude of genes impacted by mis-splicing due

to splicing factor gene mutations, the downstream functional

impact is unlikely to be solely due to the altered splicing of a

single cancer gene. Instead, splicing factor mutations may

cause a transcriptome-wide deregulation of normal splicing

(spliceosome sickness), which induces broad transcriptional
Figure 6. Pathway Enrichment Analysis Using Curated Gene Sets Indic

Lineage Specific

(A) Splicing factor gene mutations and their associated tumor cohorts used in pa

(B) Heatmap of gene set enrichment analyses for all comparison groups genera

distinct subclasses of gene sets are cell-autonomous pathways (green) and imm

(C) Representative cancer hallmark gene sets upregulated in splicing factor mut

(D) Heatmap of NESs comparing patient tumor samples and cell lines, where each

(n = 27 TCGA, n = 3 cell lines) versus RBM10WT (n = 20 TCGA, n = 30 cell lines) o

highlighted with an asterisk.

See also Figure S5 and Tables S4, S5, S6, and S7.
programs beneficial to the tumor. Overall, we observed that

different splicing factor genes in the same tumor types are

much more likely to be associated with deregulation of the

same cancer pathways. These results support the idea that

the observed mutual exclusivity of putative driver mutations

within a tumor type might be due to functional redundancy,

though we cannot rule out that co-occurrence of these

mutations may be lethal. Previous functional studies of

splicing factor mutations in SF3B1 and U2AF1 using non-he-

matological tumor cell lines (Zhou et al., 2015; Fei et al.,

2016) indicated that the mutant allele is not essential for cell

survival and does not provide a proliferation advantage

in vitro. Our pathway analysis suggests that, in certain solid

tumors, splicing factor mutations are associated with reduced

immune infiltration and, therefore, may provide selective

advantage to cancer cells through immune evasion. Unlike

SF3B1 and U2AF1, RBM10 has been reported to regulate

splicing of apoptosis and notch pathway genes, and functional

studies of cancer cell lines in vitro and in vivo show that LoF

mutations lead to enhanced colony formation or accelerated

tumor growth (Bechara et al., 2013; Hernández et al., 2016;

Zhao et al., 2017). Our analysis comparing RBM10 LoF muta-

tions in tumor samples and in cancer cell lines complements

the existing studies, and it proposes that loss of this splicing

factor has an immunosuppressive role in addition to its cell-

autonomous growth-promoting role.

Cancer-specific splicing changes are increasingly recog-

nized to contribute to tumorigenesis via various mechanisms.

Multiple oncogenes and tumor suppressors have been re-

ported to express cancer-specific or treatment-resistant

splice variants (Zhang and Manley, 2013). In another survey

of the extent of somatic single-nucleotide variants (SNVs)

altering splicing, a large number of SNVs are found to cause

intron retention in tumor suppressors and loss of function

through NMD or truncated proteins (Jung et al., 2015). Alter-

natively, splicing factors can act as proto-oncogene or tumor

suppressors when their expression is altered in cancer

(Anczuków et al., 2015; Jiang et al., 2016). The spectrum of

splicing factor gene mutations that occur in multiple tumor

types highlights somatic mutation as an important mechanism

of splicing deregulation in cancer, the scope of which we are

just starting to uncover. Collectively, these observations

suggest deregulated RNA splicing as a hallmark of cancer.

More functional studies are clearly needed to understand

the impact of RNA-splicing changes and splicing factor

mutations and, most importantly, their contribution to cancer

development.
ates that Cancer Pathways Altered by Splicing Factor Mutations Are

thway analyses.

ted using normalized enrichment scores (NESs) of 46 curated gene sets. Two

une-related signatures (purple).

ant samples.

column represents the differential pathwaymodulation ofRBM10 LoFmutants

f 46 curated gene sets. Significantly modulated gene sets (q value% 0.05) are
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Antibodies

Rabbit polyclonal anti-FUBP1 antibody Abcam Abcam# ab181111

Deposited Data

Raw and analyzed data This paper GEO: GSE100530

Human reference genome NCBI

build 37, GRCh37

Genome Reference

Consortium

http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/human/

GENCODE v19 GENCODE https://www.gencodegenes.org/releases/19.html

RefSeq NCBI https://www.ncbi.nlm.nih.gov/refseq/

Raw TCGA and CCLE RNA-Seq data Genomic Data Commons https://gdc.cancer.gov/

Processed TCGA RNA-Seq data Omicsoft http://www.omicsoft.com/oncoland-service/

MutSigCV 2016_01_28 results The Broad Institute https://confluence.broadinstitute.org/display/GDAC/

Dashboard-Analyses

MC3 v0.2.8 MC3 https://gdc.cancer.gov/about-data/publications/

mc3-2017

Experimental Models: Cell Lines

Human: U87MG ATCC ATCC � HTB-14 (TM)

Oligonucleotides

ON-TARGETplus Non-targeting

siRNA Pool

GE Dharmacon, Inc Cat# D-001810-10-05

ON-TARGETplus Human FUBP1

siRNA SMARTpool

GE Dharmacon, Inc Cat# L-011548-00-0005

Software and Algorithms

Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/

Limma Ritchie et al., 2015 https://bioconductor.org/packages/release/bioc/html/

limma.html

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

GSEA Subramanian et al., 2005 software.broadinstitute.org/gsea

heatmap.3 https://github.com/obigriffith https://raw.githubusercontent.com/obigriffith/

biostar-tutorials/master/Heatmaps/heatmap.3.R

R R Development Core Team 2011 https://www.r-project.org/

Samtools Li et al., 2009 http://samtools.sourceforge.net

Integrative Genomics Viewer (IGV) Robinson et al., 2011 http://software.broadinstitute.org/software/igv/

seaborn https://doi.org/10.5281/

zenodo.883859

http://seaborn.pydata.org/

20/20+ Tokheim et al., 2016 https://github.com/KarchinLab/2020plus
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Lihua Yu

(Lihua_Yu@h3biomedicine.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
U87MG (male, glioblastoma) cells were obtained from ATCC (ATCC HTB-14) and cultured in ATCC-formulated Eagle’s Minimum

Essential Medium (30-2003) supplemented with 10% fetal bovine serum (FBS) at 37�C with 5% CO2 and 95% humidity. Cell authen-

tication was conducted at IDEXX BioResearch using STR DNA profiling and found to be 100%matching markers listed in the ATCC

database for U87MG cells, with no species contamination.
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METHODS DETAILS

Compilation of splicing factor genes
Wecollected 1512 spliceosome and splicing related genes from three sources: 1) 244 spliceosome proteins reported in (Hegele et al.,

2012) from a comprehensive yeast two hybrid study using spliceosome components as bait, 2) 254 splicing factors and splicing

related proteins annotated in (Barbosa-Morais et al., 2006) Table S6, and 3) 1100 genes from SpliceosomeDB (Cvitkovic and Jurica,

2013). The latter two are curated component lists derived from other publications. All gene identifiers are standardized into HUGO

symbol and EntrezID. We prioritized the final list of 404 splicing factor genes (Table S1) by including all genes from sources 1) and 2),

and genes from 3) if they are annotated in as ‘‘complex-SpliceosomeDB’’ or ‘‘class/family-SpliceosomeDB’’ excluding ‘‘commonMS

contaminants,’’ or if they belong to the same protein families from any genes above. The reason we used this conservative approach

to prioritize genes in 3) is that some genes, though identified by mass spectrometry experiments in certain spliceosomes, have

undefined functions and orthologs across species and hence could simply be contaminants in sample preparations found associated

with human spliceosomes.

Detection of somatic mutation and identification of splicing factor genes with driver mutations
Somatic mutation data was provided by TCGA MC3 working group (see Key Resources Table). We considered a sample ‘‘splicing

factorWT’’ (and therefore appropriate for use in differential splicing or gene expression contexts) if therewere no non-silent mutations

in any known splicing factor genes.

MutSigCV analytical results were downloaded from Broad TCGA Firehose dashboard on September 2016 (https://confluence.

broadinstitute.org/display/GDAC/Dashboard-Analyses). MutSig2CV3.1 results were used when available. A q-value cut-off of

0.1 was used to define significantly mutated genes in each cohort. We excluded PAAD cohorts from this analysis as samples in

this cohort typically had extremely low non-silent mutation counts.

For the ratiometric method, we defined mutational hotspots (HS) as missense or in-frame deletion mutations at the same

protein position > = 3 pan-TCGA. Loss of function (LoF) mutations were defined as any of the following mutation classifications

(Frame_Shift_Del, Frame_Shift_Ins, Nonsense, Splice_Site). We then calculated %HS or %LoF as the total number of hotspot or

LoF mutation-positive samples divided by total number of non-silent mutations per gene per cohort. The ‘‘pancan’’ cohort encom-

passes all samples in TCGA. We used empirical cut-offs to define genes as HS or LoF type, specifically:

If %HS > = 30% and %LoF % 20% and HS counts > = 3, a gene is called ‘‘hotspot’’ in that cohort, and if %LoF > = 30% and

%HS % 20% and LoF mutation counts > = 10, a gene is called ‘‘LoF’’ type in that cohort.

An extended ratiometric method published by Tokheim et al. (Tokheim et al., 2016) called ‘‘20/20+’’ was used as an additional

evaluator of putative driver splicing factors. This method uses a random forest-based method trained on known cancer driver genes

to identify cohort-level cutoffs appropriate for this identification. For each cohort (as well as the ‘‘pancan’’ cohort), the pre-trained

random forest classifier provided by Tokheim et al. was used to assign Benjamini-Hochberg corrected q-values to each gene

with q < 0.1 used as a cutoff for significance. These results are given in Table S1. All genes were plotted using oncogene score

and tumor suppressor gene score provided by 20/20+, with significant genes labeled and colored based on the larger of the two

scores (i.e., red genes have higher oncogene score than tumor suppressor score, whereas blue genes the opposite) (Figure S1C).

Detection of additional samples with hotspot mutations of SF3B1, U2AF1, and SRSF2

Following read alignment by STAR allowing multimapping reads of RNaseq files, samples were interrogated for functional hotspot

mutations in known driver splicing genes SF3B1, U2AF1, and SRSF2. For SF3B1, amino acids p.E622, p.Y623, p.R625, p.N626,

p.H662, p.T663, p.K666, p.K700, p.V701, p.I704, p.G740, p.K741, p.G742, and p.D781 (Darman et al., 2015, Obeng et al., 2016)

were used. For U2AF1, amino acids p.S34, p.R156, and p.Q157 were used (Papaemmanuil et al., 2013; Lindsley et al., 2015). For

SRSF2, mutations and deletions in/near amino acid p.P95 were used (Zhang et al., 2015, Kim et al., 2015). Samtools (Li et al.,

2009) mpileup was used for genotyping, and only uniquely mapped reads were allowed. A minimum total read coverage

of 10 was imposed for the codon encoding amino acid changes in these genes as well as a minimum read coverage of 4 supporting

the change. Mutations with allele frequency < 5% were ignored. We also performed visual inspection using Integrative Genomic

Viewer (IGV, Robinson et al., 2011) and indel mis-calls were manually corrected.

Prioritization of genes for differential splicing and pathway analysis
We prioritized two groups of genes for in-depth differential splicing and pathway analysis. Group 1 includes SF3B1, SRSF2 and

U2AF1. Driver mutations of these genes are well reported with high frequency in hematological tumors and their associated splicing

changes are well studied. The goal is to understand how similar or potentially different their somatic mutations and their associated

splicing changes are pan-cancer. Group 2 includes other genes with exceptional high mutation frequency and compelling hotspot or

LoF mutation patterns. RBM10 and FUBP1 are the top 2 splicing factor genes by frequency of mutation, both with a strong LoF

mutation pattern.
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Principal component analysis of mutant and wild-type splicing factor samples
Junction counts for all TCGA samples were obtained from Omicsoft� OncoLand� 2016 Q2 release and converted to PSI. SF3B1

mutation information was obtained from TCGA pan-cancer MC3 data and validated using RNA-Seq data. Alternative 30 splice sites

promoted by SF3B1mutant (HD4-8) activity were obtained from Darman et al., 2015 (Darman et al., 2015). Alternative 30 splice sites

and exon inclusion events promoted by SF3B1 p.E902K versus splicing factor WT samples in BLCA (Table S3) are used to stratify

patient samples in Figure S2B.

Letter-value plot
Letter-value plots (Hofmann et al., 2017) are an extension of the standard boxplot for large-scale data. The seaborn python package

(see Key Resources Table) was used with the depth parameter ‘‘proportion,’’ where 0.007 is assumed the fraction of samples which

are outliers in a given cohort. Letter-value boxes (percentiles of the data, which start at 50% and decrease by half each iteration) are

drawn until this fraction is reached. Boxes are colored based on the density of points within, where darker colors indicate higher

density.

Pathway analysis
Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was performed using cancer hallmarks and the curated gene sets.

Default parameters were chosen except theminimum gene set size was set to 5. The gene expression for each cohort was defined as

the mean Log2 transcripts per million (TPM) (i.e., log2(1+tpm)). The R package limma (Ritchie et al., 2015) was used for differential

gene expression analysis after filtering out low-expressed genes (maximum TPM < 3), and gene lists ranked by moderated t-statistic

values were used as input for GSEA.

Clustering analysis of normalized enrichment score (NES) was done using the R (R Development Core Team, 2011) package using

heatmap software from (https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R)

Curation of gene sets (Table S6)
The following custom gene sets for enrichment analysis:

1. Cell cycle gene sets were obtained fromQIAGEN human cell cycle PCR array Cat. No. PAHS-020Z (http://www.sabiosciences.

com/rt_pcr_product/HTML/PAHS-020Z.html).

2. DNA damage response/repair (DDR) gene sets were shared with us by TCGA PanCanAtlas DDR analysis working group.

3. Immune gene sets were obtained from the publication by Newman et al., 2015.

4. Proteasome gene set was obtained from HUGO Gene Nomenclature Committee (HGNC) under gene family proteasome

(http://www.genenames.org/cgi-bin/genefamilies/set/690) and Kyoto Encyclopedia of Genes and Genomes (KEGG) protea-

some (http://www.genome.jp/kegg/pathway/hsa/hsa03050.html).

5. Ribosome gene sets were obtained from Ribosomal Protein Gene Database (RPG) (http://ribosome.med.miyazaki-u.ac.jp/)

and KEGG ribosome (http://www.genome.jp/kegg/pathway/hsa/hsa03010.html).

6. Spliceosome is in Table S1.

7. Nonsense mediated decay (NMD) gene set was curated based on two publications (Nicholson et al., 2010; Kervestin and

Jacobson, 2012).

8. Histone gene list were obtained fromHUGOGene Nomenclature Committee Histone gene family (http://www.genenames.org/

cgi-bin/genefamilies/set/864)

9. Antigen presentation gene set was from Reactome: (http://software.broadinstitute.org/gsea/msigdb/cards/REACTOME_

ANTIGEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTIDE_LOADING_OF_CLASS_I_MHC.html). It captures the

key elements, while excluding things that are redundant from other customer gene lists (e.g., proteasome).

FUBP1 Knockdown in U87MG and RNA Sequencing
U87MG cells were obtained from ATCC (ATCC HTB-14) and cultured in ATCC-formulated Eagle’s Minimum Essential Medium

(30-2003) supplementedwith 10%FBS.ON-TARGETplus Non-targeting siRNAPool (D-001810-10-05) andON-TARGETplus Human

FUBP1 siRNA SMARTpool (L-011548-00-0005) were obtained from Dharmacon. To knock down FUBP1, 250,000 U87MG cells were

seeded per well in six-well plates. On the second day, either the non-targeting siRNA pool or the human FUBP1 siRNA pool was

transfected into U87MG cells in quadruplicates using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific),

according to the manufacturer’s manual. The final concentration of the siRNA pool was 50 nM in each well; 3 days after transfection,

medium was refreshed. At 5 days post-transfection, one well of either non-targeting siRNA pool- or FUBP1 siRNA pool-transfected

cells was harvested in radio immunoprecipitation assay (RIPA) buffer supplemented with proteasome complete protease inhibitor

cocktail and PhosStop phosphatase inhibitor cocktail (Roche Life Science) for western blot analysis to examine the knockdown

efficiency. Specially, equal amounts of protein lysates were loaded onto 4%–12% NuPAGE Bis-Tris gels (Thermo Fisher Scientific)

before being transferred ontoNitrocellulosemembrane using the iBlot2 dry blotting system (Thermo Fisher Scientific). Themembrane

was blocked with LI-COR buffer and then incubated with rabbit polyclonal anti-FUBP1 antibody (Abcam ab181111) and monoclonal

anti-GAPDH antibody (Sigma G8795) overnight in a cold room. On the second day, the membrane was washed three times with
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tris-buffered saline Tween 20 (TBST) and incubated with LI-COR IRdye secondary antibodies before TBSTwash, and it was scanned

and quantified using LI-COR Odyssey imaging system. For RNA extraction, the remaining three wells for each transfection were

harvested with RNeasy lysis buffer, and total RNAs were extracted using RNeasy column kit (QIAGEN), following the manufacturer’s

protocol. Extracted total RNAs were analyzed on Agilent Tapestation to ensure RNA quality before being submitted to Beijing

Genomic Institute (BGI) for polyA+ RNA sequencing (RNA-seq) library preparation and sequenced on Illumina Hiseq 4000.

Differential Splicing Analysis and NMD Prediction
Differential splicing analysis was performed similar to previously describedmethodology (Darman et al., 2015). In brief, raw sequence

reads were extracted from BAM files made available through TCGA, then aligned using STAR using two-pass alignment (Dobin et al.,

2013) to human reference genome GRCh37/hg19. Junction PSI was calculated for all sets of junctions that shared a single common

ss as the number of raw reads supporting that junction divided by the total number of reads in all junctions sharing that ss. We

accounted for intron retention in PSI calculations by counting reads that completely overlapped a 6-nt window around the ss (3 nt

within the intron and 3 nt within the exon) as intron retention reads. Read count for each junction was pooled in the FUBP1 siRNA

versus non-targeting siRNA cell line comparison to increase statistical power. Each PSI measurement was converted to log odds

via the formula log(p/(1-p)) before being compared using either a moderated t test (Ritchie et al., 2015) (patient samples) or binomial

test (cell lines) between cohorts. False discovery rate (FDR)-corrected q-values < 0.05 for junctions promoted by the case or mutant

cohort (alternative junction) were considered significant. To be reported as a splicing event, at least one junction promoted by the

control, orWT case (canonical junction[s]), that shared an ss with the alternative junction was also required to have an FDR-corrected

q-value < 0.2, and these are reported in Table S3. For intron retention events, both 50 and 30 exon-intron boundaries were required to

be significant, and a minimummedian threshold for mean intron read coverage over all samples in that cohort was set at 0.1 in order

to reduce false positives. NMD prediction was performed for each splicing event by first identifying all RefSeq transcripts that con-

tained an intron that shares an ss with the mutation-promoting junction and then determining the novel peptide sequence that

resulted from altering that transcript to contain the splicing event (Darman et al., 2015). Events were predicted to be NMD-targeted

if all affected transcripts contained a stop codon > 50 nt from the final exon-exon junction.

QUANTIFICATION AND STATISTICAL ANALYSIS

The details of each statistical test are contained within the Results, including the total number of samples (n) in each case and control

condition, as well as the test used. Unless otherwise specified, p values less than 0.05 were considered significant. Multiple testing

correction was performed where applicable using the Benjamini-Hochberg FDR correction, and q-values less than 0.05 were

considered significant unless otherwise specified.

Differential Gene Expression
Gene differential expression was performed using the limma package following quantification using Kallisto (Bray et al., 2016).

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA sequencing data fromU87MGcells reported in this paper is GEO:GSE100530. All other data used

are available from the Genomic Data Commons (https://portal.gdc.cancer.gov/).
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