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ABSTRACT 26 

Objectives Clostridioides difficile infection (CDI) is a considerable healthcare and economic 27 

burden worldwide. Faecal microbial transplant remains the most effective treatment for CDI, 28 

but is not at the present time the recommended standard of care. We hereby investigate which 29 

factors derived from a healthy gut microbiome might constitute the colonisation resistance 30 

barrier (CRB) in the gut, inhibiting CDI. 31 

Method CRB drivers pH, short chain fatty acid (SCFA), and oxidation-reduction potential 32 

(ORP) were investigated in vitro using C. difficile NAP1/BI/027. Readouts for inhibitory 33 

mechanisms included germination, growth, toxin production and virulence gene expression. 34 

pH ranges (3 – 7.6), SCFA concentrations (25 – 200mM) and ORP (-300 - +200mV) were 35 

manipulated in brain heart infusion broth cultures under anaerobic conditions to assess the 36 

inhibitory action of these mechanisms.   37 

Results <pH 5.3 completely inhibited C. difficile growth to OD of 0.019 vs. 1.19 for control 38 

pH 7.5. Toxin production was reduced to 25 units vs 3125 units for pH 7.6 (1 in 5 dilutions). 39 

Virulence gene expression reduced by 150 fold compared with pH 7.6 (p<0.05). Germination 40 

and proliferation of spores below pH 6.13 yielded an average OD of 0.006 vs. 0.99 for 41 

control. SCFA were potent regulators of toxin production at 25mM and above (p<0.05). 42 

Acetate significantly inhibited toxin production to 25 units independent of OD (0.8733) vs. 43 

control (OD 0.6 and toxin titer 3125) (p<0.05). ORP did not impact C. difficile growth.  44 

Conclusion This study highlights the critical role that pH has in the CRB, regulating CDI in 45 

vitro and that SCFA can regulate C. difficile function independent of pH.  46 

 47 

48 



INTRODUCTION 49 

Clostridioides difficile (C. difficile) remains a major cause of antibiotic associated diarrhoea 50 

and ulcerative colitis in the healthcare setting (1-3). The gut microbiota plays a vital role in 51 

protection against opportunistic pathogen infections and in many disease states an altered or 52 

dysbiotic gut microbiota is observed (4-7). A competent gut microbiota and environmental 53 

conditions created in the gut forms a barrier to infectious colonisation and is a main 54 

contributor to protect against enteric infection (7). A gut epithelial mucus layer forms a 55 

physical barrier between bacteria and host (8) moderating interaction of opportunistic 56 

pathogens with the gut epithelium and preventing bacterial translocation and infection (9). 57 

The gut microbiota/host interactions are also fundamentally important for training host innate 58 

immune responses to pathogen burden (10).  59 

 60 

There is compelling evidence that oxidation-reduction potentials (ORP), pH and short chain 61 

fatty acids (SCFA) govern microbial colonisation in the gut (3, 4, 10-12).  SCFA have also 62 

been shown to downregulate pathogenic virulence factors in enterohaemorrhagic E. coli 63 

O157:H7 by inhibiting shiga toxin synthesis (13).  These protective mechanisms are 64 

collectively termed the colonisation resistance barrier (CRB). 65 

 66 

Pinpointing an effective therapeutic for C. difficile infection (CDI) is challenging. Current 67 

treatment  for CDI has changed from metronidazole and vancomycin to fidaxomycin and 68 

vancomycin (14-16). Fidaxomycin carries a lower risk of recurrence, but its cost-69 

effectiveness is a topic of debate (17). The main risk factor to CDI is gut microbiota dysbiosis 70 

(12, 18), associated with age and/or administration of broad-spectrum antibiotics. Dysbiosis 71 

leads to an impairment in the CRB yielding opportunities for pathogenic bacteria to 72 

proliferate (3, 11, 12). Maintaining a diverse microbial ecosystem in the colon supports 73 



adequate pH control, optimum ORP and increased SCFA production (19, 20), crucial 74 

elements of the CRB. In the present study, we sought to investigate which elements of the 75 

CRB act as drivers of virulence, germination and growth inhibition of Clostrioides difficile 76 

hypervirulent ribotype 027.  77 

 78 

MATERIALS AND METHODS 79 

Culture conditions for vegetative cells and spores 80 

C. difficile NAP1/BI/027 (BAA-1803, Hall and O’Toole Prevot, ATCC, USA) was prepared 81 

alongside a third passage working cell bank and stored in 10% glycerol at -80°C. Unless 82 

otherwise stated, unsupplemented Brain Heart Infusion (BHI) (Oxoid, UK) broth with a final 83 

pH=7.5 was used for all growth experiments (19, 20). An anaerobic 1% inoculum of ~106 84 

cells was used for each experiment (Don Whitley A45 anaerobic workstation; anaerobic gas 85 

mix (10% CO2, 10% H2, 80% N2)) at 37°C for 48 hours. 86 

 87 

Preparation of spore suspension 88 

A spread of C. difficile ATCC 1803 was carried out on cycloserine/cefoxitin (250 mg/L and 8 89 

mg/L respectively) supplemented BHI agar plates (to select for C. difficile and avoid 90 

contaminant organisms). The plates were incubated at 37°C anaerobically for approximately 91 

7-10 days to encourage sporulation. Colonies were transferred to 1:1 sterile PBS (1%) and 92 

ethanol (100%) for at least 72 hours aerobically to purify the spore suspension. The spores 93 

were then centrifuged (4000 x g for 10 minutes), washed twice and resuspended in sterile 1% 94 

PBS before 1:10 serial dilutions were plated onto blood agar using the modified Miles and 95 

Misra drop plate technique (21) for enumeration. 96 

 97 

 98 



pH experiments 99 

pH ranges reflecting the gastrointestinal tract were examined (pH 3.3-7.6). Sterile BHI broth 100 

was prepared at appropriate pH with 0.1M citric acid and 0.2M disodium phosphate buffer in 101 

10mL glass universals and pre-equilibrated anaerobically overnight. Vegetative cell and 102 

spore suspensions were used at a 1% inoculum of an overnight culture or stored spore 103 

suspension respectively (~106 CFU). Challenged vegetative cells were incubated for 48 hours 104 

anaerobically and spore suspensions for 72 hours anaerobically.  105 

 106 

Continuous culture 107 

A glass 500mL continuous culture vessel was sealed and filled with sterile pH buffered BHI 108 

with an anaerobic gas mix (10% CO2, 10% H2, 80% N2) bubbled through the vessel. Vessel 109 

media (pH=7.5) was heated to 37°C on a hotplate/magnetic stirrer in a laminar flow hood and 110 

inoculum (5mL vegetative cells) added to media and continuously transferred to the vessel at 111 

1 mL/minute. pH was adjusted by feeding appropriate pH buffered BHI (as described in pH 112 

experiments). pH of the vessel was continually monitored; samples were measured for OD 113 

(600nm) and purity streaks were conducted daily. 114 

 115 

Manipulating ORP of BHI broth 116 

100mL sterile, pH buffered BHI broth (pH 5.37, 6.65 and 7.07) was pre-equilibrated 117 

overnight anaerobically. An ORP probe (Cole Parmer, UK) was disinfected in 2% Virkon 118 

(v/v) for 15 minutes before being rinsed in sterile dH20. The ORP probe was calibrated using 119 

pH 4 and pH 7 buffer saturated with quinhydrone.  BHI broth ORP was continually measured 120 

(mV) as filter sterilised 4-5 mL of 2% (v/v) potassium ferricyanide was added to raise the 121 

ORP to + 150mV (19) or above until the level plateaued. The broth was then immediately 122 

inoculated with 1 mL of an overnight culture of C. difficile. Cultures were incubated for 48 123 



hours anaerobically at 37°C. Eh readings were taken at 24 and 48 hours, followed by 124 

measurement of optical density (600nm) at 48 hours. 125 

 126 

SCFA concentrations in BHI broth 127 

BHI broth was buffered to desired pH ranges between pH 3.3-7.6 and sodium salts of SCFA 128 

(acetate, butyrate and propionate) were prepared in a 2M stock solution in H2O and filter 129 

sterilised. Concentrations of SCFA used in experiments ranged from 25 – 300mM.  130 

 131 

Vero cell culture conditions and assay design 132 

African green monkey kidney vero cells (kindly provided by Dr Gillian Douce, University of 133 

Glasgow, UK) were cultured in 75cm2 tissue culture flasks (Starlab, UK) using Eagle’s 134 

Minimum Essential Medium (MEM) (Sigma Aldrich, UK) supplemented with 10% faecal 135 

calf serum and 1% penicillin/streptomycin (complete MEM) with 5% CO2 at 37°C. 96 well 136 

(flat bottomed) microtiter plates were seeded with log 104 vero cells per well and incubated 137 

until a 95% confluent monolayer had formed on the base of the wells. Five-fold serial 138 

dilutions of the cell-free supernatants from pH and SCFA studies were carried out in 139 

complete MEM and exposed to the vero cell monolayer overnight. The monolayers were 140 

observed using a bright field inverted microscope (Olympus, UK) for cell rounding. The 141 

highest dilution of supernatant with less than 30% cell rounding indicated the toxin titer. 142 

Controls were clean BHI broth and MEM. Little to no variation was observed in the triplicate 143 

samples. There were carried out in duplicate to ensure reliability of results and confirmed by 144 

another researcher. 145 

 146 

 147 

 148 



qPCR virulence/colonisation gene analysis 149 

Bacterial cell pellets were treated with RNAprotect (Qiagen, UK) upon conclusion of 150 

experimentation according to the manufacturer’s instructions. The pellets were stored at – 151 

80°C until RNA extraction. RNA was extracted and purified using the RNAeasy kit (Qiagen, 152 

UK) with an additional bead beating step upon addition of RNeasy lysis buffer (Qiagen, UK) 153 

using 0.1mm glass beads (Sigma, UK). DNase treatment was conducted using the RNase free 154 

DNase set following the manufacturer’s instructions (Qiagen, UK). Reverse transcription was 155 

carried out with the Quanti-Tect reverse transcription kit according to manufacturer’s 156 

instructions (Qiagen, UK). In order to quantify virulence gene expression, quantitative PCR 157 

was carried out using PrecisionPLUS 2x qPCR MasterMix premixed with SYBR Green 158 

(PrimerDesign, UK).  The virulence/colonisation genes and primers utilised in this 159 

experiment (22, 23) are described in supplementary file 1 (Life Technologies, UK). The 160 

cycling protocol was 95°C hot start for 2 minutes, x40 cycles of 95°C for 15 seconds and 161 

60°C annealing temperature for 1 minute. Cycle threshold (Ct) values were collected and 162 

percentage expression calculated in comparison to a housekeeping gene (rpoA) by calculation 163 

of ∆∆CT. 164 

 165 

Statistical Analysis 166 

Statistical analysis on data to determine statistical significance between groups was carried 167 

out on Graphpad Prism 7 (GraphPad Software, USA). Shapiro-Wilkes normality test was 168 

conducted to determine distribution of data. Statistical analysis between groups of parametric 169 

data was carried out using a one-way analysis of variance (ANOVA) with Dunnet’s post hoc 170 

test or a Kruskal-Wallis test with Tukey’s post hoc test for multiple comparisons. In cases 171 

where treatment/dose was investigated, a two-way ANOVA with Dunn’s post hoc analysis 172 

was used. Statistical significance was achieved if p < 0.05. 173 

174 



RESULTS 175 

pH strongly influences C. difficile germination, growth, toxin production and colonisation 176 

factor gene expression. 177 

A narrow pH threshold of less than 0.5 pH units differentiated between inhibition of growth 178 

and full confluent growth of C. difficile vegetative cells and spores (Figure 1). Already 179 

revived vegetative cells successfully proliferated at pH=5.83 and above (p<0.01), whilst 180 

spores germinated successfully at pH=6.19 and above (p<0.01). Some of the variability in 181 

results was likely due to noticeable ‘clumping’ in all C. difficile cultures in which confluent 182 

growth had occurred. The OD of the higher pH cultures (pH=6.65, pH=7.07 and pH=7.67) 183 

were not statistically significant from pH=5.83 (p>0.1). Additional studies demonstrated 184 

(Figure 2) no germination for an inoculated spore suspension at pH=5.83 (Fig 2A), and a 185 

shift in lag phase from spore and vegetative cells at pH=6.65 (Fig 2B) and pH=7.76 (Fig 2C). 186 

Inoculation with a spore suspension versus inoculation with a live culture did not result in a 187 

change of maximum optical density (OD) (1.0-1.5). These effects of pH fluctuations on 188 

vegetative cell suspensions were replicated in a continuous culture model (Fig 2D). Lowering 189 

pH below 5.80 resulted in a drop in OD, which was successfully recovered when pH was 190 

raised to above pH=6 in three separate cycles.  191 

 192 

Toxin production was significantly decreased due to the effect of pH=5.37 and 5.83 on C. 193 

difficile (p<0.01, Figure 3). Maximum toxin production was found at pH=7.67, with a step-194 

wise increase in a vegetative cell/spore mixed culture (expressed as the dilution at which the 195 

toxin longer resulted in verocell rounding). Gene expression of TcdA appeared to increase 196 

above pH=6.65 although expression was only significantly higher compared with control at 197 

pH=7.67 (p=0.03, Fig 4A). TcdB expression was not increased when C. difficile was 198 

challenged over the range pH=5.8 to pH=6.19, but was significantly higher at pH=6.65 199 



(p=0.002), pH=7.07 (p=0.007) and pH=7.67 (p=0.0015, Fig 4B). Cwp84 expression 200 

increased significanlty (ten-fold) at pH=7.67 compared with control (p=0.0368, Fig 4C). 201 

CWp84 expression was not significantly increased at any other pH condition in comparison 202 

with the control, which may be linked to fibrous filament morphology found at pH=7.67 203 

(Figure 1). Flagellar protein FliD expression was not detectable at pH=5.83 and pH=6.19, 204 

and was significantly lower at pH=6.65 (p=0.0122) and pH=7.07 (p=0.0024)  (Fig 4D).  205 

 206 

C. difficile toxin production is regulated by acetate 207 

Acetate, propionate and butyrate all had inhibitory effects on C. difficile toxin production at 208 

varying concentrations (Figure 5). Acetate (at all concentrations used) at pH=6.67 did not 209 

influence growth, but significantly inhibited toxin production at 50mM, 100mM and 200mM 210 

(p<0.01, Figure 5). Butyrate reduced C. difficile toxin titer at 25mM, 100mM and 200mM 211 

but did not affect growth (p<0.01). Propionate-treated cell supernatant resulted in high vero 212 

cell rounding at 200mM, with low bacterial OD, but 25mM, 50mM and 100mM significantly 213 

affected toxin burden on vero cell rounding (p<0.01, Figure 5). Experimental error was ruled 214 

out by challenging vero cells with supernatants of three biological replicates and conducting 215 

the assay with three technical replicates.  216 

 217 

ORP has no significant role in the regulation of C. difficile growth 218 

At pH=6.65, increased ORP significantly increased growth (OD) compared with control 219 

(p=0.003) (Figure 6) but no other significant effects were observed when ORP was varied 220 

under experimental conditions. 221 

 222 

  223 

224 



DISCUSSION 225 

Understanding what constitutes the CRB is important to preventing CDI in an ageing 226 

population. This study demonstrates the exquisite sensitivity of C. difficile to subtle changes 227 

around pH=5.67. Increased filamentous morphology was observed at higher pH (pH=6.7 and 228 

above for vegetative cells) which correlates with an increased expression of Cwp84 at 229 

pH=7.67, perhaps due to shorter lag phase. Previous work has shown increased colonisation 230 

gene expression in response to a neutral/basic pH gut environment, observations noted in a 231 

dysbiotic gut (24, 25).  232 

 233 

pH in the colon can reach as low as 5.37–5.83 when consuming a high fibre diet (26, 27). We 234 

demonstrate that manipulation of colonic pH may prevent the colonisation, germination, 235 

growth and toxin production of hypervirulent C. difficile 027. May et al., (1994) highlight the 236 

influence of dietary fibre on the CRB, attributed to increased SCFA production and lowered 237 

pH around the inhibitory ranges we have identified (28). We demonstrate a prolonged lag 238 

phase, decrease in toxin production at pH range 5.37–7.07 and correlation with decreased 239 

expression of the virulence genes tcdA and tcdB. Decreased cytotoxicity and enhanced 240 

colonisation resistance was previously demonstrated in fermentation systems supplemented 241 

with oligosaccharides, which was not attributable Bifidobacteria spp. but may be related to 242 

pH=5.5 maintenance in this model (29). Wetzel and McBride (2019) described increased 243 

toxin A production at pH=5.5 with a solid media matrix. Our results in liquid media suggest a 244 

clear impact of narrow pH thresholds on C. difficile germination and growth. pH impact on 245 

toxin appears to be related to influence on lag phase length and not the impact on the cells 246 

toxin production capacity. 247 

 248 



We demonstrate that C. difficile spore suspension growth was inhibited below pH=6.19 but 249 

proliferation of vegetative cell suspensions above pH=5.67 suggesting that at pH<6.19 250 

germination and outgrowth of spores specifically is prevented. Maximal germination has 251 

previously been shown to occur above pH=6.5 (30). C. difficile can withstand oxidative 252 

environments like S. enterica serotype Typhimurium (31). C. difficile utilises TcdB-induced, 253 

NADPH oxidase (NOX) epithelial cell ROS upregulation to facilitate survival over a wide 254 

range of redox potentials, indicating specialised survival mechanisms in C. difficile at 255 

extreme Eh ranges (32). We observed that extreme positive Eh at the point of inoculation does 256 

not affect C. difficile growth, and that pH drives its ability to proliferate at extreme Eh. 257 

Manipulation of pH in the colon is a plausible mechanism for influencing C. difficile 258 

virulence and pathogenicity regardless ORP perturbations.  259 

 260 

We found significant effects of SCFA on toxin gene expression but no effect on C. difficile 261 

growth. We observed that 100mM sodium butyrate and 100mM sodium propionate increased 262 

tcdA gene expression. Similarly, 100mM sodium butyrate and 50mM sodium acetate 263 

increased tcdB gene expression (Data not shown). However, this was not reflected with toxin 264 

titer in response to the SCFA challenge, which was downregulated.  A similar occurrence was 265 

discussed by Dupuy and Sonenshein, (1998) who found that C. difficile toxin gene expression 266 

was increased as a stringent response to catabolism repression at stationary phase of growth 267 

(33). Increased virulence as a stringent response to stressors is one mechanism by which C. 268 

difficile can utilise a competitive environment to its advantage. This highlights the 269 

importance of identifying colonisation/virulence modifying therapeutics which may alter the 270 

CRB in the colon.  271 

 272 



The limitations of this work are that it does not combine all explored factors and include 273 

complexities of the gut microbiome. Further work is needed to determine if these findings 274 

translate to humans. Future work into the combined effect which incorporates a competent 275 

microbiome, with a detailed understanding of the impact this has on C. difficile germination, 276 

growth and virulence would be a beneficial next step.  277 

 278 

CONCLUSION 279 

 This work highlights colonic environmental mechanisms which can be exploited for 280 

developing CDI therapeutics (34). SCFA and pH, within physiological ranges, are important 281 

to prevent C. difficile colonisation, germination, growth and/or virulence in vitro. Studies 282 

which enhance the CRB in humans at risk of CDI are warranted, particularly if they can 283 

reduce the antibiotic burden, and they may be achievable relatively simply and inexpensively 284 

through dietary means. 285 
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FIGURE LEGENDS 291 

Figure 1: a) C. difficile vegetative cell and spore growth when challenged with pH ranging 292 

from pH 3.36 to pH 7.67 (n = 9). Letters highlight statistically significant groups (p<0.05) 293 

  294 

Figure 2: Vegetative cell vs spore lag phase at A) pH 5.83 B) pH 6.65 and C) pH 7.67 (n=3). 295 

D) pH Effect of pH on C. difficile growth study conducted in chemostat continuous flow 296 

culture showing fluctuations in pH leads to decrease and recovery in OD. Conducted over 35 297 

days with continuous 1 mL/min flow rate of clean, pH buffered BHI broth. 298 

 299 

Figure 3: Toxin titer of C. difficile 027 challenged with pH 5.37 – 7.67 (n=3). Toxin titer 300 

was enumerated as the lowest serial dilutions that resulted in 30 % cell rounding on vero cell 301 

monolayers (expressed as dilution – 1 in 5 increments). Letters highlight statistically 302 

significant groups (p<0.05) 303 

 304 

Figure 4: a) C. difficile tcdA expression at varied pH ranges pH (5.6 - 7.6). b) C. difficile 305 

tcdB expression at varied pH ranges (pH 5.6 – 7.6), c) C. difficile Cwp84 expression at varied 306 

pH ranges (pH 5.6 – 7.6). d) C. difficile FliD expression at varied pH ranges (pH 5.6 – 7.6). 307 

e) C. difficile toxin titer at varied pH (pH 5.3 - 7.6) with control (culture in BHI at pH 7.5). 308 

The experiment was conducted from biological replicates of the effect of pH on C. difficile 309 

growth work (n = 3). This work was conducted from biological replicates of the effect of pH 310 

on C. difficile growth work (n = 3). Each biological replicate was tested in duplicate. Letters 311 

highlight statistically significant groups (p<0.05). 312 

 313 

Figure 5: Quantification of toxin titer and OD (600 nm) of C. difficile 027 in response to 314 

challenge of varied concentrations of SCFA sodium salts of acetate, butyrate and propionate 315 



from 25 – 200 mM (n = 3). Left axis displays toxin titer, enumerated as the lowest serial 316 

dilutions that resulted in 30 % cell rounding on vero cell monolayers (expressed as dilution – 317 

1 in 5 increments). Data is shown in bar chart form. Right axis displays OD (600 nm). Data is 318 

shown in scatterplot form. Letters highlight statistically significant groups (p<0.0001) 319 

 320 

Figure 6: Effect of perturbations in ORP at point of inoculation on C. difficile 027 growth 321 

(n=3). ORP is expressed as ΔEh and results are shown as OD (600 nm). Asterisk highlights 322 

statistical significance from control group. ** p<0.01. 323 

 324 
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