6,867 research outputs found

    Optimally designed quantum transport across disordered networks

    Full text link
    We establish a general mechanism for highly efficient quantum transport through finite, disordered 3D networks. It relies on the interplay of disorder with centro-symmetry and a dominant doublet spectral structure, and can be controlled by proper tuning of only coarse-grained quantities. Photosynthetic light harvesting complexes are discussed as potential biological incarnations of this design principle.Comment: 7 pages (incl. 2 pages of suppl. mat.), 3 figure

    Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy

    Get PDF
    OBJECTIVE To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene. METHODS Patients with a phenotype suggestive of a motor, non-length-dependent neuronopathy predominantly affecting the lower limbs were identified at participating neuromuscular centers and referred for targeted sequencing of DYNC1H1. RESULTS We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are characterized by congenital or childhood-onset lower limb wasting and weakness frequently associated with cognitive impairment. The clinical severity is variable, ranging from generalized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent brain MRI, there was an underlying structural malformation resulting in polymicrogyric appearance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation characterized by sparing and relative hypertrophy of the adductor longus and semitendinosus muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-medial muscles at the calf level. Proximal muscle histopathology did not always show classic neurogenic features. CONCLUSION Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and the CNS neuronal migration defects are often associated, reinforcing the importance of DYNC1H1 in both central and peripheral neuronal functions

    Angiography-based superficial wall strain of de novo stenotic coronary arteries:serial assessment of vessels treated with bioresorbable scaffold or drug-eluting stent

    Get PDF
    Objectives: This study sought to present an angiography-based computational model for serial assessment of superficial wall strain (SWS, dimensionless) of de-novo coronary stenoses treated with either bioresorbable scaffold (BRS) or drug-eluting stent (DES). Background: A novel method for SWS allows the assessment of the mechanical status of arteries in-vivo, which may help for predicting cardiovascular outcomes. Methods: Patients with arterial stenosis treated with BRS (n = 21) or DES (n = 21) were included from ABSORB Cohort B1 and AIDA trials. The SWS analyses were performed along with quantitative coronary angiography (QCA) at pre-PCI, post-PCI, and 5-year follow-up. Measurements of QCA and SWS parameters were quantified at the treated segment and adjacent 5-mm proximal and distal edges. Results: Before PCI, the peak SWS on the ‘to be treated’ segment (0.79 ± 0.36) was significantly higher than at both virtual edges (0.44 ± 0.14 and 0.45 ± 0.21; both p &lt; 0.001). The peak SWS in the treated segment significantly decreased by 0.44 ± 0.13 (p &lt; 0.001). The surface area of high SWS decreased from 69.97mm2 to 40.08mm2 (p = 0.002). The peak SWS in BRS group decreased to a similar extent (p = 0.775) from 0.81 ± 0.36 to 0.41 ± 0.14 (p &lt; 0.001), compared with DES group from 0.77 ± 0.39 to 0.47 ± 0.13 (p = 0.001). Relocation of high SWS to device edges was often observed in both groups after PCI (35 of 82 cases, 41.7 %). At follow-up of BRS, the peak SWS remained unchanged compared to post-PCI (0.40 ± 0.12 versus 0.36 ± 0.09, p = 0.319). Conclusion: Angiography-based SWS provided valuable information about the mechanical status of coronary arteries. Device implantation led to a significant decrease of SWS to a similar extent with either polymer-based scaffolds or permanent metallic stents.</p

    Numerical Solution of Differential Equations by the Parker-Sochacki Method

    Get PDF
    A tutorial is presented which demonstrates the theory and usage of the Parker-Sochacki method of numerically solving systems of differential equations. Solutions are demonstrated for the case of projectile motion in air, and for the classical Newtonian N-body problem with mutual gravitational attraction.Comment: Added in July 2010: This tutorial has been posted since 1998 on a university web site, but has now been cited and praised in one or more refereed journals. I am therefore submitting it to the Cornell arXiv so that it may be read in response to its citations. See "Spiking neural network simulation: numerical integration with the Parker-Sochacki method:" J. Comput Neurosci, Robert D. Stewart & Wyeth Bair and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717378

    The ATLAS MDT remote calibration centers

    Full text link
    The precision chambers of the ATLAS Muon Spectrometer are built with Monitored Drift Tubes (MDT). The requirement of high accuracy and low systematic error, to achieve a transverse momentum resolution of 10% at 1 TeV, can only be accomplished if the calibrations are known with an accuracy of 20 Îźm. The relation between the drift path and the measured time (the socalled r-t relation) depends on many parameters (temperature T, hit rate, gas composition, thresholds,...) subject to time variations. The r-t relation has to be measured from the data without the use of an external detector, using the autocalibration technique. This method relies on an iterative procedure applied to the same data sample, starting from a preliminary set of constants. The required precision can be achieved using a large (few thousand) number of non-parallel tracks crossing a region, called calibration region, i.e. the region of the MDT chamber sharing the same r-t relation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85421/1/jpconf10_219_022028.pd

    Cerebrospinal Fluid Viral Load Across the Spectrum of Untreated Human Immunodeficiency Virus Type 1 (HIV-1) Infection: A Cross-Sectional Multicenter Study

    Get PDF
    Background The aim of this large multicenter study was to determine variations in cerebrospinal fluid (CSF) HIV-RNA in different phases of untreated human immunodeficiency virus type 1 (HIV-1) infection and its associations with plasma HIV-RNA and other biomarkers. Methods Treatment naive adults with available CSF HIV-RNA quantification were included and divided into groups representing significant disease phases. Plasma HIV-RNA, CSF white blood cell count (WBC), neopterin, and albumin ratio were included when available. Results In total, 1018 patients were included. CSF HIV-RNA was in median (interquartile range [IQR]) 1.03 log(10) (0.37-1.86) copies/mL lower than in plasma, and correlated with plasma HIV-RNA (r = 0.44, P &lt; .01), neopterin concentration in CSF (r = 0.49, P &lt; .01) and in serum (r = 0.29, P &lt; .01), CSF WBC (r = 0.34, P &lt; .01) and albumin ratio (r = 0.25, P &lt; .01). CSF HIV-RNA paralleled plasma HIV-RNA in all groups except neuroasymptomatic patients with advanced immunodeficiency (CD4 &lt; 200) and patients with HIV-associated dementia (HAD) or opportunistic central nervous system (CNS) infections. Patients with HAD had the highest CSF HIV-RNA (in median [IQR] 4.73 (3.84-5.35) log(10) copies/mL). CSF &gt; plasma discordance was found in 126 of 972 individuals (13%) and varied between groups, from 1% in primary HIV, 11% in neuroasymptomatic groups, up to 30% of patients with HAD. Conclusions Our study confirms previous smaller observations of variations in CSF HIV-RNA in different stages of HIV disease. Overall, CSF HIV-RNA was approximately 1 log(10) copies/mL lower in CSF than in plasma, but CSF discordance was found in a substantial minority of subjects, most commonly in patients with HAD, indicating increasing CNS compartmentalization paralleling disease progression. HIV-RNA is detectable in cerebrospinal fluid (CSF) across all stages of untreated HIV and usually parallel plasma HIV-RNA at a lower level. A substantial proportion (13%) of patients have CSF&gt;plasma HIV-RNA, most commonly in patients with HIV-associated dementia

    Bean seedling growth enhancement using magnetite nanoparticles

    Get PDF
    Advanced fertilizers are one of the top requirements to address rising global food demand. This study investigates the effect of bare and polyethylene glycol-coated Fe<sub>3</sub>O<sub>4</sub> nanoparticles on the germination and seedling development of <i>Phaseolus vulgaris</i> L. Although the germination rate was not affected by the treatments (1 to 1 000 mg Fe L<sup>–1</sup>), seed soaking in Fe<sub>3</sub>O<sub>4</sub>-PEG at 1 000 mg Fe L<sup>–1</sup> increased radicle elongation (8.1 ± 1.1 cm vs 5.9 ± 1.0 cm for the control). Conversely, Fe<sup>2+</sup>/Fe<sup>3+</sup><sub>(aq)</sub> and bare Fe<sub>3</sub>O<sub>4</sub> at 1 000 mg Fe L<sup>–1</sup> prevented the growth. X-ray spectroscopy and tomography showed that Fe penetrated in the seed. Enzymatic assays showed that Fe<sub>3</sub>O<sub>4</sub>-PEG was the least harmful treatment to α-amylase. The growth promoted by the Fe<sub>3</sub>O<sub>4</sub>-PEG might be related to water uptake enhancement induced by the PEG coating. These results show the potential of using coated iron nanoparticles to enhance the growth of common food crops

    A Simplified Method for Patterning Graphene on Dielectric Layers

    Get PDF
    The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report μm scale, few-layer graphene structures formed at moderate temperatures (600–700 °C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore