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Abstract 

We report the synthesis and characterization of a kinetically controlled, thermoreversible 

supramolecular polyurethane whose mechanical properties depend unusually strongly on the 

processing history. Materials were prepared by solution casting, quenching and annealing of 

quenched material, allowing pronounced micro-structural evolution, which leads to rapid 

increases in modulus as determined by rheological analysis.  Tensile tests showed that the 

quenched material is soft, weak and ductile (shear modulus ~ 5 MPa, elongation ~ 250 %), 

but after annealing, at 70 °C for one hour, it becomes stiffer, stronger and more brittle (~ 20 

MPa, ~ 20 %).  FTIR and NMR spectroscopic analysis, coupled with MDSC and SAXS, 

were performed to investigate the network’s dynamic structural changes. SAXS results 

suggest the presence of a lamellar structure in the sample when solution cast at high 

temperature, or annealed. This ordering is unique when compared to structurally-related 

supramolecular bisurethane and bisurea polymers, and may be the cause of the observed path 

dependence.  These mechanical properties, which can be switched repeatedly by simple 

thermal treatments, coupled with its adhesion properties as determined from peel and tack 

tests, make it an excellent candidate as a recyclable material for adhesives and coatings. 

Keywords: SPU, Kinetic control, mechanical response  
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1. Introduction 

Supramolecular polymer networks typically comprise low molecular weight oligomers which 

self-assemble through non-covalent interactions such as metal-ligand coordination bonds, 

aromatic π-π interactions, or hydrogen bonds.1-8 These self-assembled networks feature 

mechanical properties of thermoplastics and elastomers, along with significant potential for 

recycling and self-healing, because of their capability for reversible monomer-to-polymer 

transitions. Supramolecular polymers have also been designed to yield shape-persistent and 

highly ordered filaments.9 The ability to tune the mechanical properties of supramolecular 

polymer networks by varying the composition of the oligomer subunits (i.e. recognition motif, 

polymer backbone molecular weight) is very attractive in materials design.10,11 These 

addressable and tuneable12 characteristics are highly desirable in both bulk commodity and 

value-added applications, such as adhesives,13 shape-memory materials,14,15 healable 

coatings,16 and impact-resistant structures (for example in mobile electronics).17 The majority 

of supramolecular polymer networks reported to date have had their properties generated 

under thermodynamic control, as non-covalent interactions are relatively weak and thus 

assemble/disassemble with low activation energies. However, recently, it has been 

demonstrated that supramolecular polymerisations can show pathway complexity18-22 which 

has vast functional potential, as they allow, in principle, for more elaborate structural and 

functional diversity of self-assembled systems.23 The most unique feature of such kinetically 

controlled supramolecular systems is that they provide an opportunity to solve the inherently 

conflicting challenge of achieving intrinsic processability combined with desirable material 

properties.24-26 

In this paper, we report a novel, kinetically controlled thermoreversible supramolecular 

polyurethane network. The material reported herein simultaneously exhibits inherently good 

processability, owing to a rapid drop in modulus over a narrow temperature range, and 
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tuneable mechanical properties at ambient or near ambient temperatures.  Furthermore, in 

contrast to materials previously reported, these properties can be modified freely and 

repeatedly by simple thermal treatments (melting, quenching, and annealing processes). This 

behaviour has not been observed in our previous studies on SPUs:7,27 the mechanical 

response measured in repeated rheological experiments on a single specimen showed no 

significant change to viscoelastic properties between tests.  The switching programme, herein 

reported, has been established by systematic rheological and mechanical assessment, and the 

structures producing these unique properties have been investigated through FTIR 

spectroscopy, MDSC and SAXS, whilst the potential of this material as a pressure-sensitive 

adhesive has also been explored.  

 

2. Results and discussion 

The polyurethane material presented in this paper will be shown to have a rich rheological 

profile coupled with mechanical properties that can be greatly modified through thermal 

processing.  These properties are linked to structural features including microphase separation 

and dissociation of intermolecular hydrogen bonds at moderate temperatures. Since the end-

group plays an important role in hydrogen bonding and phase separation, this will be 

discussed first, before moving on to a detailed analysis of the rheological behaviour and 

associated structural features.  Finally, there will be a discussion of data from peel and tack 

tests on the material.  Thus, this paper presents a full picture of the synthesis, chemistry, 

processing, properties and potential applications of this novel material.  Details of the 

experimental methods are given in the supplementary information.  
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2.1 Synthesis 

The supramolecular polyurethane 1 was synthesized using a modification of a two-step 

protocol.7,10,12,27,28  Firstly, the hydrophobic and elastomeric diol Krasol™ HLBH-P2000 was 

reacted with methylene diphenyl diisocyanate (MDI) at 80 ºC for a period of three hours to 

generate the isocyanate end-capped prepolymer. Dibenzylamine was then added to the 

prepolymer to install the receptor end-groups via urea bond formation and afford the desired 

polyurethane 1 in a yield of 89% (see Figure 1 plus electronic supplementary information 

(ESM) Figures S1, S2 and S3 for spectroscopic and thermal data). GPC analysis (THF, room 

temperature) revealed a material with Mn and Mw values of 7303 and 14303, respectively. 

Figure 1. Supramolecular polyurethane 1. 

 

2.2 FTIR and NMR Spectroscopic Analysis 

In order to assess the thermoreversible characteristics of this polymer system, experiments 

were conducted using NMR and FTIR spectroscopy. Polyurethane 1 was probed by variable 

temperature FTIR spectroscopy to investigate the effect of temperature on the supramolecular 

network. The FTIR spectra were recorded at temperatures from 30 to 180 °C, see Figure S4.  

The absorption band at ca. 1735 cm-1 is characteristic of unbound urethanes. This band 

increased in intensity as the temperature was elevated, whereas the absorption band at ca. 

1705 cm-1, consistent with bound urethanes, decreased. Finally, the absorption band at 1740 

cm-1 was predominant at a temperature of 150 °C indicating that almost all of the hydrogen 

bond interactions were disrupted.  
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2.3 Rheological behaviour 
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Figure 2. Rheological behaviour of polyurethane 1 with different processing histories, 

obtained in oscillatory shear at 5 Hz and an amplitude of 0.1 % with a heating rate of 

2 ºC min-1  

Dynamic rheological testing was employed to characterise the viscoelastic properties of 

polyurethane 1. A number of experiments were performed to explore the effects of quenching 

and annealing on the response. Figure 2 shows a comparison between the temperature 

dependence of a specimen that was solution cast from THF at 70 ºC over a period of 16 hours, 

a specimen that, having been cast, was quenched from the molten state at 180 ºC to 20 ºC at 

an average cooling rate of 15 ºC min-1, and finally a specimen that has undergone the same 

quenching process, followed by annealing at 70 ºC for one hour (see also Figure S5 for 

comparison of data from two annealed specimens and Figure S10 for loss modulus curves 

from all rheometer experiments described in the paper).  At low temperatures (from 0 to 70 

ºC), the storage modulus of the cast material exhibits a gradual decrease with increasing 

temperature.  As the temperature is increased further there are three distinct decreases in the 

storage modulus, between 70 ºC and 105 ºC, between 130 ºC and 145 ºC, and between 150 ºC 

and 170 ºC, respectively. At temperatures above 170 ºC the rheology approaches that of a low 
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viscosity liquid; oscillatory shear experiments could no longer be performed, but viscosity 

measurements were obtained, and are presented as a function of time in the ESM (Figure S6). 

These decreases are entirely consistent with the FTIR spectroscopic data presented above 

which reveal hydrogen bond dissociations with increasing temperature and with SAXS data 

revealing key structural changes throughout the heating ramp (Figure S7). 

The rheological behaviour of the quenched material is very different.  At low temperatures, 

the modulus is lower than that of the cast material, and it shows a significant decrease with 

increasing temperature, until approximately 65 ºC where there is a rapid increase (over three 

orders of magnitude) with increasing temperature to 85 ºC; this is indicative of significant 

structural changes in the material.  There is a short plateau from 85 ºC to 100 ºC, at 

approximately the same modulus as cast polyurethane 1 exhibits at room temperature.  Above 

100 ºC there are again three sharp drops in storage modulus, the first two of which are 

followed (as the temperature increases) by a small modulus increase.  These are assumed to 

be associated, again, with the hydrogen bond dissociation.  

After quenching followed by annealing at 70 ºC for 1 hour, the behaviour becomes more 

similar to the cast material, at the lower temperatures.  There is still, however, an increase in 

storage modulus as the temperature increases; although this is weakened and delayed 

compared to the quenched material, the final modulus is the same. As the temperature is 

increased further, the drops in modulus seen in with the other materials are observed, but the 

temperature at which the first drop occurs increases. 

Overall, polyurethane 1 has both good elevated temperature processability, with a large drop 

of modulus within a narrow temperature range, and good mechanical properties, with a 

relatively high modulus, typical of a stiff elastomer, at ambient conditions. However, there 

are clearly features of the thermomechanical behaviour that warranted further investigation.   
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Figure 3. Viscosity vs. time profiles for quenched polyurethane 1 at different temperatures, 

obtained at a constant shear rate of 5 s-1.  

The first of these features is the increase in modulus with increasing temperature between 65 

and 85 ºC.  This indicates a time-dependent evolution of the structure of the material.  To 

further investigate this phenomenon, the rheological behaviour of quenched polyurethane 1 at 

constant shear rate was measured as a function of time at four different temperatures, see 

Figure 3. Here it is observed that although the viscosity is reasonably stable at 60 ºC, at 

higher temperatures, a significant increase in viscosity was observed after an initial stable 

period, these data indicate that there is a time-dependent structural change in the material, 

which affects the mechanical response, and that this change occurs more rapidly as the 

temperature increases. Such mechanical variations were also apparent in structural 

differences seen via SAXS analysis of quenched polyurethane 1 held at analogous 

temperatures to that of Figure 3 (clear distinctions seen between hold at > 80 °C and those at 

lower temperatures, see Figure S8).  It should be noted that the end of the test was caused by 

limitations of the instrument, where the maximum viscosity had been reached, and thus the 

test was aborted automatically.  At 90 ºC, the increase in viscosity with time is followed by a 

levelling off, which suggests saturation of the structural evolution. These data are consistent 
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with the observations from the temperature sweep in Figure 1: as the temperature is increased 

from 60 ºC there is a structural evolution which increases the modulus of the material, and 

which itself occurs more rapidly with increasing temperature until the new structure is fully 

formed. 
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Figure 4. The rheological behaviour of quenched polyurethane 1 at four different (a) heating 

and (b) cooling rates.  All tests performed at an oscillation frequency of 5 Hz and amplitude 

of 0.1 %. 

This behaviour was further investigated through a series of rising and falling temperature 

sweeps at different heating and cooling rates.  Figure 4 shows the temperature dependence of 

the modulus of quenched specimens tested at four different heating rates and four different 

cooling rates.  The temperature range over which the modulus increases shows a clear 

dependence on heating rate, Figure 4a, and indeed the increase is not observed at the fastest 

rate, 20 ºC min-1.  These data are consistent with the time dependence of this process: 

increasing the heating rate shortens the time over which the material is able to undergo the 

required structural changes, and so a higher temperature is required to drive these changes.  

At high enough heating rates, this becomes similar to the temperature at which the hydrogen 
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bonds begin to disrupt, discussed further below and supported by SAXS measurements taken 

(ESM Figures S7 and S9a).    

In contrast, it is found that different cooling rates have little effect on the rheological response, 

Figure 4b.  Here, specimens were heated to 180 ºC and held at this temperature for 3 minutes.   

Above 100 ºC the rheometer was unable to generate reliable data for the faster cooling rates.  

Below 100 ºC the behaviour was very similar for all the materials.  Loss modulus information 

for all the materials is shown in the ESM (Figure S9b). 
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Figure 5. The rheological behaviour of quenched polyurethane 1 after annealing at 70 ºC for 

different time periods.  All experiments performed in oscillatory shear at 5 Hz and 0.1 % 

amplitude with a heating rate of 20 ºC/min.   

The data presented above, especially those in Figure 3, suggest that the mechanical properties 

of the material can be controlled through annealing.  To investigate the effect of annealing on 

subsequent material behaviour, a number of specimens were subjected to quenching (from 

180 to 20 ºC at 15 ºC min-1), followed by annealing for different periods of time at 70 ºC.  

The specimens were then subjected to rheological analysis and tensile characterisation. The 

rheological behaviour is presented in Figure 5. The heating rate for these experiments is 
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20 ºC min-1, chosen to prevent significant further structural evolution taking place between 

65 ºC and 85 ºC in these tests. As anticipated, these data show a significant increase of the 

storage modulus with increasing annealing time.  The behaviour above 100 ºC is also worth 

noting: as the annealing time increases this behaviour becomes increasingly similar to that of 

the cast material, again exhibiting several sharp drops of storage modulus with increasing 

temperature.  

2.4 Large strain tensile response 

To further characterize the mechanical performance of polyurethane 1 after casting, 

quenching and annealing, tensile tests were performed. Between four and six experiments 

were performed on each material; mean stress–strain curves with error bars are shown in 

Figure 6; corresponding mechanical properties, calculated from the individual stress–strain 

curves (see Figure S11 in the ESM), are shown in Table 1. In these experiments, the strain 

was calculated using Digital Image Correlation on images of the specimen surface. 
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Figure 6. Mean tensile stress-strain curves obtained at 22 ºC for polyurethane 1 quenched 

then annealed at 70 ºC for different time periods (indicated), and cast polyurethane 1. 
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The apparent tensile modulus was calculated from the slope of the stress-strain curve between 

0 and 3.5 % strain.  This is not the true modulus of the material, which is time and strain 

dependent, but an apparent stiffness representing the behaviour over this period for 

comparative purposes.  The material strength was measured as the largest stress supported by 

the sample. It is observed that thermal annealing affects the tensile behaviour significantly: 

two hours annealing at 70 ºC turns quenched polyurethane 1 (QPU) from a low modulus 

(tensile modulus: 2.45 MPa), weak (strength: 0.14 MPa), but ductile (elongation at break: 

246 %) material into a much stiffer (49.1 MPa), stronger (3.08 MPa), but brittle (elongation 

at break: 23 %) material.  For comparison, the solution cast polyurethane 1 presents a similar 

strength to the 120 minute annealed, but with an elongation at break of only 10 %. 

 

Sample Strength (MPa) 

Elongation at 

break (%) 

Energy 

absorbed (MPa) 

QPU-0min 

QPU-15min 

QPU-30min 

QPU-60min 

QPU-120min 

Cast PU 

0.16 ± 0.04 

1.14 ± 0.14 

1.51 ± 0.29 

2.31 ± 0.12 

3.08 ± 0.10 

2.81 ± 0.11 

246 ± 78 

22.8 ± 4.1 

17.8 ± 1.0 

20.0 ± 1.9 

23.0 ± 1.8 

9.7 ± 2.0 

15.4 ± 3.2 

21.9 ± 3.1 

20.9 ± 5.4 

38.1 ± 4.3 

58.0 ± 4.8 

24 ± 7.0 

 

Table 1. Mechanical properties from tensile testing for quenched polyurethane 1 annealed at 

70 ºC for different times (errors shown are standard deviations).  
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2.5 Structural characterisation 

The characterisation data above indicate that polyurethane 1 is a kinetically controlled 

material, whose properties are strongly dependent upon, and can be controlled by, the thermal 

processing history. To understand the structural changes associated with this behaviour, 

modulated differential calorimetry (MDSC) and small angle X-ray scattering (SAXS) were 

performed. 

MDSC provides superior sensitivity, resolution and separation of overlapping transitions, 

than standard DSC.29,30  Here, experiments were performed on cast, quenched and quenched 

then annealed (both one and two hours at 70 ºC) materials; the results are shown in Figure 7, 

where multiple transitions are observed during heating. For the quenched material, three 

exothermic peaks are evident at temperatures ca. 50 ºC, 110 ºC, and 140 ºC, as indicated in 

the non-reversible heat flow signal in Figure 7c, in addition to three endothermic peaks at ca. 

100 ºC, 140 ºC, and 170 ºC, as indicated in the reversible heat flow signal in Figure 7b. 

However, after annealing for two hours the exothermic peak at 50 ºC almost disappears 

completely, and the endothermic peak at 100 ºC shifts slightly higher to 104 ºC; the other 

exothermic and endothermic peaks at higher temperatures are the same as in the quenched 

sample. These complex transitions observed in MDSC should correlate to the complex 

rheological behaviour of polyurethane 1, and indeed the transition temperatures match the 

rheological data very well.  The cast material behaves similarly to the quenched, whilst the 

material annealed for one hour has behaviour intermediate between that for the quenched and 

two hours annealed samples.  These observations are also consistent with the rheological 

profiles.  
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Figure 7. Total (a), reversible (b) and non-reversible (c) MDSC data for quenched, cast and 

annealed polyurethane 1 at a heating rate of 2 ºC/min 

The properties of polyurethanes are normally influenced significantly by micro-phase 

separation structures;21 therefore SAXS experiments have been performed in order to 

investigate the influence of the bisurethane end groups on the microphase separation in this 

material.  Data from SAXS analysis of four specimens of polyurethane 1 with different 

processing histories (cast, quenched and annealed) are shown in Figure 8a.  All three samples 

exhibit peaks that may be associated with microphase separation; however, whilst the profile 

for the cast materials possesses two peaks centred at 0.05 Å-1 (d-spacing of 125 Å) and 0.105 

Å-1 (60 Å); after quenching, just one peak with a d-spacing of 60 Å is observed.  For the 

quenched then annealed specimens two peaks are again evident. This suggests the presence of 

lamellar ordering. To the best of our knowledge, this is the first report of a SAXS profile 
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corresponding to a lamellar-type ordering in a supramolecular polyurethane of this type. 

However, broad maxima in the scattering profile of segmented polyurethanes has been 

previously reported, with a weak peaks at 80 Å and another at 170 Å, and was attributed to a 

bimodal distribution of interdomain spacings.31 
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Figure 8. Small angle X-ray scattering (SAXS) of polyurethane 1 with; a) different 

processing histories, b) different cooling rates with respect to different processing histories 

(note that on this graph the results are stacked to allow better view of the curves) 

Further SAXS experiments demonstrate the importance of heating and cooling rates on the 

structure of the polyurethane Figure 8b.  It is shown that cooling from both annealing (70 °C) 

and quenching (180 °C) temperatures at rates > 15 °C/min do not allow recovery of 

microphase separation.  Interestingly some degree of ordering is apparent from the higher 

initial starting temperature (peaks appearing with a d-spacing of 77 and 43 Å), and a longer 

cooling time period allowing some recovery.  Similar SAXS patterns are obtained on cooling 

the annealed polymer at 2 oC/min, although microphase separated structures are not observed 

on cooling at 20 oC/min (Figure 8b and Figure S12).  These results, combined with additional 

SAXS measurements previously mentioned (Figures S7-9), suggest parallels between 

mechanical properties, structural ordering and processing variations.  
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3. Discussion of mechanical and structural analysis 

The mechanical and structural date above indicate a rich spectrum of behaviours, which are 

consistent with a range of structural changes.  In previous reports, SAXS domain spacing 

ranging from 40 to 80 Å have been observed in similar bisurethane and bisurea systems.10 In 

this study, lamellar ordering is observed for  polyurethane 1 samples cast from a hot solution 

or obtained from an annealed melt, whilst the SAXS profile for the quenched sample lacks 

the low q peak. Here the end-group has two rigid aromatic rings, and therefore, it is possible 

that it can adopt a more extended configuration permitted by stacking of the MDI units and 

urethane moieties, and thus the micro-phase separation of the supramolecular derivatives 

should favour alignment of the these moieties. The additional micro-phase structure (lamellar 

with d-spacing = 12.5 nm) shows strong pathway dependence: it exists in cast polyurethane 1, 

can be removed by quenching from the melt, and then is regained by annealing. The 

formation of this additional micro-phase structure is thought to be the reason behind the time-

dependent increase of storage modulus above 65 ºC, observed during the heating of quenched 

specimens, and the dramatic difference between the tensile behaviour of the quenched 

material on the one hand, and the cast or annealed materials, on the other.  In particular, the 

increase in modulus and strength, accompanied by a decrease in strain to failure, can be 

explained by the development of lamellar ordering on heating. This is very unusual for a 

(block) copolymer system32 but can be rationalised in the present segemented polyurethane 

polymer if the hydrogen bonding network is disrupted at higher temperature giving rise to 

LCST33 (lower critical solution temperature) or LCOT (lower critical ordering transition) 

phase behaviour, i.e. microphase separation on heating.34 The disruption of the hydrogen 

bonding network is indicated by the VT-FTIR spectroscopic data discussed above. The 

lamellar spacing from the peaks in the SAXS profile, 12.5 nm, is significantly larger than the 

estimated radius of gyration Rg for this polymer, ca. 4 nm, based on a degree of 
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polymerization N = 130 and a segment length b = 0.80 nm for poly(ethylene-co-butylene).35 

This indicates significant chain extension in the lamellar state.   

Considering the DSC data, the first exothermic peak (~50 °C) observed in the MDSC for 

quenched polyurethane 1 during heating is a result of the formation of the additional micro-

phase suggested by the SAXS profile. Since quenching from the molten state does not allow 

the polymer chains enough time to self-assemble, the less thermodynamically favoured state 

is therefore trapped; however, thermal annealing allows the more thermodynamically 

favoured structures to form, causing the structural and mechanical changes observed in the 

rheometer experiments during heating. This is quite similar to other reported pathway 

dependent supramolecular polymers.26, 36 For annealed polyurethane 1, it is consistent to 

observe the disappearance of the first exothermic peaks after annealing at 70 ºC for two hours, 

since the annealing has already turned the quenched polyurethane 1 into the more stable 

thermodynamically favoured state, and thus the heating during analysis will not cause 

significant structural changes; this is again consistent with the mechanical response.  

As the temperature is further increased, the first endothermic transition at about 100 ºC and 

second endothermic transition at about 135 ºC are due to the disruption of the ordered micro-

phase structures caused by the weakening of hydrogen bonds; the FTIR spectroscopic data 

show that these bonds start to disrupt at a temperature of 90 ºC, at 130 ºC the peak at 1740 

cm-1 characteristic of unbound urethanes is as intense as the peak at 1705 cm-1 characteristic 

of bound urethanes, and finally, the hydrogen bond interactions are disrupted completely at 

150 ºC. This can also explain the first and second sharp drop of the storage modulus starting 

at the temperatures of about 90 and 130 ºC, for cast polyurethane 1. There is no evidence of 

degradation in the mechanical performance after cycles of melting and quenching, and TGA 

analysis indicates the onset of degradation to be greater than 175 °C, see Figure S13 in the 

ESM. The other two exothermic peaks observed by MDSC at the temperatures of 110 and 
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140 ºC indicate that formation of ordered structures can occur at high temperatures, which 

may account for the two increases in the storage modulus associated with the large drops in 

quenched polyurethane 1. 

When considering these results, and future applications of the material, it should be noted that 

the microstructure of the material would be expected to evolve at room temperature, perhaps 

on timescales of order weeks or months. 37, 38  In all the experiments reported here, structural 

or mechanical characterisation took place within at most a few hours of the thermal 

treatments; however, further research would be required to assess the long-term stability of 

the structure.   

It is also interesting to compare this polyurethane with another thermoreversible 

supramolecular polyurethane we published7 recently, which exhibited excellent healing 

properties with full recovery of the mechanical performance at 45 ºC. There is only a small 

difference in the chemical structure of the phenyl end-groups. No additional micro-phase was 

observed in the case of that material, which demonstrates that even small end-group 

modifications can affect the self-assembly of supramolecular polyurethanes significantly, and 

thus leads to dramatically different behaviours and mechanical properties. From an 

application standpoint, it is also useful to note that polyurethane 1, especially in the annealed 

state, retains its high modulus to a higher temperature than the other material, giving a wider 

range of potential applications. 

 

 4. Adhesion properties 

The desirable properties of inherent good processability and large scale tunable mechanical 

properties make polyurethane 1 a good candidate for use as an adhesive and coating material, 

and further characterisation was performed through peel and tack testing. Peel testing and 
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subsequent data analysis follows the procedures outlined in the ESIS TC4 protocol, described 

in the ESM, for the determination of the adhesive fracture energy for flexible laminates using 

peel tests.39 Representative load vs. displacement curves are shown in ESM (Figure S16), and 

the calculated data can be seen in Tables S1 and S2, also in the ESM. It is observed that the 

peel strength does not depend significantly on specimen preparation temperature, and 

excellent adhesion properties can be achieved for specimens prepared at ambient temperature 

(25 ºC) using quenched polyurethane 1, with a calculated adhesive fracture energy as high as 

740 J m-2. However, annealing at a temperature of 70 ºC for two hours, which increases the 

strength, but reduces the ductility of the polyurethane film, leads to a much lower peel 

strength, with a calculated adhesive fracture energy of 120 J m-2. It should be noted that the 

adhesive fracture energy calculated by the peel test is the practical adhesion of the materials, 

which includes two parts: one is the energy consumed by the separation of polyurethane 1 

film and substrate, the other is the energy consumed due to the large deformation of 

polyurethane 1 film itself. Therefore, the test results can be explained by the different failure 

behaviour of the peel joints, as shown in Figure S17. It is observed that quenched 

polyurethane 1 presents cohesive failure, the film experiences large deformation before 

failure, which consumes significant energy, and thus shows high fracture adhesive energy 

owing to the soft, weak but flexible nature of the material. However, after two hours 

annealing at the temperature of 70 ºC, the film is much stiffer and stronger, but brittle. Thus, 

failure does not occur within the film, but from the interface between film and substrate, and 

the deformations are smaller, Figure S17b.  

Two further observations can be made regarding these experiments.  Firstly, that it was not 

possible to produce reliable peel specimens by solution casting of the material, which is 

consistent with the discussion in this section, and the tensile data obtained above.  Secondly, 

that when peel specimens were produced at 50 ºC from the quenched material, it was found 
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that the peel test data were less reliable (see Figure S16), than those from specimens 

produced at 25 ºC and 35 ºC.  This is consistent with there being some evolution of the 

structure at 50 ºC, if not as much as would take place at 70 ºC. 

Tack tests were performed at three different normal forces for quenched polyurethane 1 at 

room temperature (20 ºC); the results are presented in Figure 9. It is observed that the stress-

time curves show a plateau in stress following the initial peak, and the peak stress shows 

pressure dependence, which increases with increasing normal force. This is consistent with 

the behaviour of a classic pressure sensitive adhesive (PSA). A peak stress as high as 1.2 

MPa is reached at the normal force of 20 N, which is close to the value of standard PSA,40 

and suggests that quenched polyurethane 1 can be used as a PSA. It is not possible to use the 

cast polyurethane 1 as a PSA at ambient temperature as it is a solid with shear modulus of 

approximately 20 MPa; however, thermal treatment by quenching to avoid the 

thermodynamically favoured state, once again demonstrates the functional potential of such 

supramolecular polymers by utilising their unique pathway dependence. 
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Figure 9. Stress vs. time curves for quenched polyurethane 1 from probe tack tests with 

different normal forces at a temperature of 20 ºC and speed of -5 mm/s. 
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5. Conclusion 

In this work, a novel kinetically controlled, thermoreversible supramolecular polyurethane 

with high dependence on processing history was synthesised. The data presented indicate that 

the degree of microphase separation in this material can be controlled by different processing 

conditions, giving rise to different rheological and mechanical properties. This, in addition to 

the rapid decrease in modulus above certain temperatures, endows polyurethane 1 with 

inherently good processability and tunable large-scale mechanical behaviour that can be 

modified by simple thermal treatments.  

More specifically, whilst solution casting produces relatively stiff, strong and brittle 

specimens, quenching from the melt produces a soft, flexible material with a large strain to 

failure. Subsequent annealing of the quenched material returns it to mechanical properties 

similar to the cast state, but with increased strain to failure. Comprehensive structural 

characterisation has produced results consistent with the mechanical response.  MDSC 

showed that there are multiple transitions during heating, which are the cause of the complex 

rheological behaviour. VT-FTIR spectroscopic studies showed that the hydrogen bonds start 

to disrupt from 90 ºC until 150 ºC. SAXS suggests the presence of a lamellar structure at high 

temperature, which to our knowledge is an unprecedented observation for this type of 

supramolecular polymer system. This microphase existed in the cast polyurethane 1 and 

could be destroyed by quenching, but was then regained by annealing at a suitable 

temperature: it is the primary cause of the unique pathway dependence for this material. The 

unique properties of polyurethane 1 make it a candidate for use as a smart material for 

adhesives and coatings. Peel tests showed that excellent fracture adhesive energy can be 

obtained for the quenched polyurethane 1 prepared at ambient temperature, and tack tests 

showed that the quenched material 1 has potential for use as a PSA; however, further research 

would be need to assess effect of long term structural evolution on these properties. 
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