342 research outputs found

    Multifrequency Observations of the Blazar 3C 279 in January 2006

    Full text link
    We report first results of a multifrequency campaign from radio to hard X-ray energies of the prominent gamma-ray blazar 3C 279, which was organised around an INTEGRAL ToO observation in January 2006, and triggered on its optical state. The variable blazar was observed at an intermediate optical state, and a well-covered multifrequency spectrum from radio to hard X-ray energies could be derived. The SED shows the typical two-hump shape, the signature of non-thermal synchrotron and inverse-Compton (IC) emission from a relativistic jet. By the significant exposure times of INTEGRAL and Chandra, the IC spectrum (0.3 - 100 keV) was most accurately measured, showing - for the first time - a possible bending. A comparison of this 2006 SED to the one observed in 2003, also centered on an INTEGRAL observation, during an optical low-state, reveals the surprising fact that - despite a significant change at the high-energy synchrotron emission (near-IR/optical/UV) - the rest of the SED remains unchanged. In particular, the low-energy IC emission (X- and hard X-ray energies) remains the same as in 2003, proving that the two emission components do not vary simultaneously, and provides strong constraints on the modelling of the overall emission of 3C 279.Comment: 4 pages, 6 figures; to be published in the Proc. of the 6th INTEGRAL workshop "The Obscured Universe" (Moscow, July 2-8, 2006), eds. S. Grebenev, R. Sunyaev, C. Winkler, ESA SP 622 (2006

    Fabrication and properties of tungsten heavy metal alloys containing 30% to 90% tungsten

    Get PDF
    In 1983, Pacific Northwest Laboratory conducted a survey of tungsten heavy metal alloys having lower-than-normal (<90%) tungsten content. The purpose of the work was to develop tougher, more impact-resistant high-density alloys for applications benefitting from improved mechanical properties. Tungsten heavy metal alloys of 30 to 90% tungsten content were fabricated and their mechanical properties measured. Although ultimate strength was essentially independent of tungsten content, lower tungsten-content alloys had lower yield stress, hardness, and density, and decidedly higher elongations and impact energies. Cold work was effective in raising strength and hardness but detrimental to elongation and impact energies. Precipitation hardening and strain aging raised hardness effectively but had less influence on other mechanical properties. 34 figures, 7 tables

    Connection between the Accretion Disk and Jet in the Radio Galaxy 3C 111

    Full text link
    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4--10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuum flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 light-days of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with steeper slope at shorter timescales. The break timescale of 13 (+12,-6) days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which the X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons --- the corona --- situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the FR I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black holeComment: Accepted for publication in ApJ. 18 pages, 17 figures, 11 tables (full machine readable data-tables online in ApJ website

    Early Science with the Large Millimeter Telescope: observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    Get PDF
    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1mm continuum images and wide bandwidth spectra (73-111GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z=2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup=2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0±0.2)×1011 M⊙/ÎŒ, and the mean dust mass is (2.0±0.2)×109 M⊙/ÎŒ, where Ό≈2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of ÎŽGDR≈55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the LCOâ€ČL^{\prime }_{\rm CO}-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminositie

    Another look at the BL Lacertae flux and spectral variability

    Get PDF
    The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical frequencies. During this period, high-energy observations were performed by XMM-Newton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. The GASP-WEBT observations show an optical flare in 2008 February-March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable. The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate flux variability on an hour time scale. The Swift X-ray data reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting regions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral variability.Comment: 12 pages, 10 figures, accepted for publication in A&

    Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)-Full Data Release

    Get PDF
    We present and release the full dataset for the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. This survey used the Submillimeter Array (SMA) to image the 74 known protostars within the Perseus molecular cloud. The SMA was used in two array configurations to capture outflows for scales >>30â€Čâ€Č^{\prime\prime} (>>9000 au) and to probe scales down to ∌\sim1â€Čâ€Č^{\prime\prime} (∌\sim300 au). The protostars were observed with the 1.3 mm and 850 ÎŒ\mum receivers simultaneously to detect continuum at both wavelengths and molecular line emission from CO(2-1), 13^{13}CO(2-1), C18^{18}O(2-1), N2_2D+^+(3-2), CO(3-2), HCO+^+(4-3), and H13^{13}CO+^+(4-3). Some of the observations also used the SMA's recently upgraded correlator, SWARM, whose broader bandwidth allowed for several more spectral lines to be observed (e.g., SO, H2_2CO, DCO+^+, DCN, CS, CN). Of the main continuum and spectral tracers observed, 84% of the images and cubes had emission detected. The median C18^{18}O(2-1) linewidth is ∌\sim1.0 km s−1^{-1}, which is slightly higher than those measured with single-dish telescopes at scales of 3000-20000 au. Of the 74 targets, six are suggested to be first hydrostatic core candidates, and we suggest that L1451-mm is the best candidate. We question a previous continuum detection toward L1448 IRS2E. In the SVS13 system, SVS13A certainly appears to be the most evolved source, while SVS13C appears to be hotter and more evolved than SVS13B. The MASSES survey is the largest publicly available interferometric continuum and spectral line protostellar survey to date, and is largely unbiased as it only targets protostars in Perseus. All visibility (uvuv) data and imaged data are publicly available at https://dataverse.harvard.edu/dataverse/full_MASSES/.Comment: Accepted to ApJ

    AGILE detection of extreme gamma-ray activity from the blazar PKS 1510-089 during March 2009. Multifrequency analysis

    Full text link
    We report on the extreme gamma-ray activity from the FSRQ PKS 1510-089 observed by AGILE in March 2009. In the same period a radio-to-optical monitoring of the source was provided by the GASP-WEBT and REM. Moreover, several Swift ToO observations were triggered, adding important information on the source behaviour from optical/UV to hard X-rays. We paid particular attention to the calibration of the Swift/UVOT data to make it suitable to the blazars spectra. Simultaneous observations from radio to gamma rays allowed us to study in detail the correlation among the emission variability at different frequencies and to investigate the mechanisms at work. In the period 9-30 March 2009, AGILE detected an average gamma-ray flux of (311+/-21)x10^-8 ph cm^-2 s^-1 for E>100 MeV, and a peak level of (702+/-131)x10^-8 ph cm^-2 s^-1 on daily integration. The gamma-ray activity occurred during a period of increasing activity from near-IR to UV, with a flaring episode detected on 26-27 March 2009, suggesting that a single mechanism is responsible for the flux enhancement observed from near-IR to UV. By contrast, Swift/XRT observations seem to show no clear correlation of the X-ray fluxes with the optical and gamma-ray ones. However, the X-ray observations show a harder photon index (1.3-1.6) with respect to most FSRQs and a hint of harder-when-brighter behaviour, indicating the possible presence of a second emission component at soft X-ray energies. Moreover, the broad band spectrum from radio-to-UV confirmed the evidence of thermal features in the optical/UV spectrum of PKS 1510-089 also during high gamma-ray state. On the other hand, during 25-26 March 2009 a flat spectrum in the optical/UV energy band was observed, suggesting an important contribution of the synchrotron emission in this part of the spectrum during the brightest gamma-ray flare, therefore a significant shift of the synchrotron peak.Comment: 13 pages, 7 figures, 3 tables. Accepted for publication in Astronomy and Astrophysic

    A new activity phase of the blazar 3C 454.3. Multifrequency observations by the WEBT and XMM-Newton in 2007-2008

    Full text link
    We present and analyse the WEBT multifrequency observations of 3C 454.3 in the 2007-2008 observing season, including XMM-Newton observations and near-IR spectroscopic monitoring, and compare the recent emission behaviour with the past one. In the optical band we observed a multi-peak outburst in July-August 2007, and other faster events in November 2007 - February 2008. During these outburst phases, several episodes of intranight variability were detected. A mm outburst was observed starting from mid 2007, whose rising phase was contemporaneous to the optical brightening. A slower flux increase also affected the higher radio frequencies, the flux enhancement disappearing below 8 GHz. The analysis of the optical-radio correlation and time delays, as well as the behaviour of the mm light curve, confirm our previous predictions, suggesting that changes in the jet orientation likely occurred in the last few years. The historical multiwavelength behaviour indicates that a significant variation in the viewing angle may have happened around year 2000. Colour analysis reveals a complex spectral behaviour, which is due to the interplay of different emission components. All the near-IR spectra show a prominent Halpha emission line, whose flux appears nearly constant. The analysis of the XMM-Newton data indicates a correlation between the UV excess and the soft-X-ray excess, which may represent the head and the tail of the big blue bump, respectively. The X-ray flux correlates with the optical flux, suggesting that in the inverse-Compton process either the seed photons are synchrotron photons at IR-optical frequencies or the relativistic electrons are those that produce the optical synchrotron emission. The X-ray radiation would thus be produced in the jet region from where the IR-optical emission comes.Comment: 10 pages, 12 figures (7 included in the text, 5 in GIF format), accepted for publication in A&
    • 

    corecore