264 research outputs found

    RIDGE SUBDUCTION IN THE HISTORY OF THE CENTRAL ASIAN OROGENIC BELT: EVIDENCE AND TECTONIC IMPLICATIONS FOR THE EVOLUTION OF AN ACCRETIONARY OROGEN

    Get PDF
    Cenozoic ridge subduction and the resultant slab windows have been well documented worldwide [Sisson et al., 2003], especially along the western margins of North and South America [Thorkelson, Taylor, 1989]. The principal characteristics of ridge subduction, which can be used to recognise the process in ancient orogens, include: intrusion of ridge-generated magmas into a forearc in a near-trench position [Marshak, Karig, 1977]; this can be regarded as the hallmark of ridge subduction.Cenozoic ridge subduction and the resultant slab windows have been well documented worldwide [Sisson et al., 2003], especially along the western margins of North and South America [Thorkelson, Taylor, 1989]. The principal characteristics of ridge subduction, which can be used to recognise the process in ancient orogens, include: intrusion of ridge-generated magmas into a forearc in a near-trench position [Marshak, Karig, 1977]; this can be regarded as the hallmark of ridge subduction

    A verification logic representation of indeterministic signal states

    Get PDF
    The integration of modern CAD tools with formal verification environments require translation from hardware description language to verification logic. A signal representation including both unknown state and a degree of strength indeterminacy is essential for the correct modeling of many VLSI circuit designs. A higher-order logic theory of indeterministic logic signals is presented

    HDL to verification logic translator

    Get PDF
    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models

    Correctness proof of an in-place permutation

    Full text link

    Geological archive of the onset of plate tectonics

    Get PDF
    © 2018 The Author(s) Published by the Royal Society. All rights reserved. Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of seafloor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780-2710Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700-2440Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics

    Shear velocity model for the Kyrgyz Tien Shan from joint inversion of receiver function and surface wave data

    Get PDF
    The Tien Shan is the largest active intracontinental orogenic belt on Earth. To better understand the processes causing mountains to form at great distances from a plate boundary, we analyse passive source seismic data collected on 40 broad band stations of the MANAS project (2005-2007) and 12 stations of the permanent KRNET seismic network to determine variations in crustal thickness and shear wavespeed across the range. We jointly invert P- and S-wave receiver functions with surface wave observations from both earthquakes and ambient noise to reduce the ambiguity inherent in the images obtained from the techniques applied individually. Inclusion of ambient noise data improves constraints on the upper crust by allowing dispersion measurements to be made at shorter periods. Joint inversion can also reduce the ambiguity in interpretation by revealing the extent to which various features in the receiver functions are amplified or eliminated by interference from multiples. The resulting wavespeed model shows a variation in crustal thickness across the range. We find that crustal velocities extend to ∼ 75 km beneath the Kokshaal Range, which we attribute to underthrusting of the Tarim Basin beneath the southern Tien Shan. This result supports the plate model of intracontinental convergence. Crustal thickness elsewhere beneath the range is about 50 km, including beneath the Naryn Valley in the central Tien Shan where previous studies reported a shallow Moho. This difference apparently is the result of wavespeed variations in the upper crust that were not previously taken into account. Finally, a high velocity lid appears in the upper mantle of the Central and Northern part of the Tien Shan, which we interpret as a remnant of material that may have delaminated elsewhere under the range.km, including beneath the Naryn Valley in the central Tien Shan where previous studies reported a shallow Moho. This difference apparently is the result of wavespeed variations in the upper crust that were not previously taken into account. Finally, a high velocity lid appears in the upper mantle of the Central and Northern part of the Tien Shan, which we interpret as a remnant of material that may have delaminated elsewhere under the range.This is the final published version. It's also available from Oxford Journals at http://gji.oxfordjournals.org/content/199/1/480.full

    Continental flood basalts derived from the hydrous mantle transition zone

    Get PDF
    It has previously been postulated that the Earth's hydrous mantle transition zone may play a key role in intraplate magmatism, but no confirmatory evidence has been reported. Here we demonstrate that hydrothermally altered subducted oceanic crust was involved in generating the late Cenozoic Chifeng continental flood basalts of East Asia. This study combines oxygen isotopes with conventional geochemistry to provide evidence for an origin in the hydrous mantle transition zone. These observations lead us to propose an alternative thermochemical model, whereby slab-triggered wet upwelling produces large volumes of melt that may rise from the hydrous mantle transition zone. This model explains the lack of pre-magmatic lithospheric extension or a hotspot track and also the arc-like signatures observed in some large-scale intracontinental magmas. Deep-Earth water cycling, linked to cold subduction, slab stagnation, wet mantle upwelling and assembly/breakup of supercontinents, can potentially account for the chemical diversity of many continental flood basalts

    Temperature Effects on Kinetics of K V 11.1 Drug Block Have Important Consequences for In Silico Proarrhythmic Risk Prediction s

    Get PDF
    ABSTRACT Drug block of voltage-gated potassium channel subtype 11.1 human ether-a-go-go related gene (K v 11.1) (hERG) channels, encoded by the KCNH2 gene, is associated with reduced repolarization of the cardiac action potential and is the predominant cause of acquired long QT syndrome that can lead to fatal cardiac arrhythmias. Current safety guidelines require that potency of K V 11.1 block is assessed in the preclinical phase of drug development. However, not all drugs that block K V 11.1 are proarrhythmic, meaning that screening on the basis of equilibrium measures of block can result in high attrition of potentially low-risk drugs. The basis of the next generation of drug-screening approaches is set to be in silico risk prediction, informed by in vitro mechanistic descriptions of drug binding, including measures of the kinetics of block. A critical issue in this regard is characterizing the temperature dependence of drug binding. Specifically, it is important to address whether kinetics relevant to physiologic temperatures can be inferred or extrapolated from in vitro data gathered at room temperature in high-throughout systems. Here we present the first complete study of the temperature-dependent kinetics of block and unblock of a proarrhythmic drug, cisapride, to K V 11.1. Our data highlight a complexity to binding that manifests at higher temperatures and can be explained by accumulation of an intermediate, non-blocking encounter-complex. These results suggest that for cisapride, physiologically relevant kinetic parameters cannot be simply extrapolated from those measured at lower temperatures; rather, data gathered at physiologic temperatures should be used to constrain in silico models that may be used for proarrhythmic risk prediction

    Subduction or sagduction? Ambiguity in constraining the origin of ultramafic–mafic bodies in the Archean crust of NW Scotland

    Get PDF
    The Lewisian Complex of NW Scotland is a fragment of the North Atlantic Craton. It comprises mostly Archean tonalite–trondhjemite–granodiorite (TTG) orthogneisses that were variably metamorphosed and reworked in the late Neoarchean to Paleoproterozoic. Within the granulite facies central region of the mainland Lewisian Complex, discontinuous belts composed of ultramafic–mafic rocks and structurally overlying garnet–biotite gneiss (brown gneiss) are spatially associated with steeply-inclined amphibolite facies shear zones that have been interpreted as terrane boundaries. Interpretation of the primary chemical composition of these rocks is complicated by partial melting and melt loss during granulite facies metamorphism, and contamination with melts derived from the adjacent migmatitic TTG host rocks. Notwithstanding, the composition of the layered ultramafic–mafic rocks is suggestive of a protolith formed by differentiation of tholeiitic magma, where the ultramafic portions of these bodies represent the metamorphosed cumulates and the mafic portions the metamorphosed fractionated liquids. Although the composition of the brown gneiss does not clearly discriminate the protolith, it most likely represents a metamorphosed sedimentary or volcano-sedimentary sequence. For Archean rocks, particularly those metamorphosed to granulite facies, the geochemical characteristics typically used for discrimination of paleotectonic environments are neither strictly appropriate nor clearly diagnostic. Many of the rocks in the Lewisian Complex have ‘arc-like’ trace element signatures. These signatures are interpreted to reflect derivation from hydrated enriched mantle and, in the case of the TTG gneisses, partial melting of amphibolite source rocks containing garnet and a Ti-rich phase, probably rutile. However, it is becoming increasingly recognised that in Archean rocks such signatures may not be unique to a subduction environment but may relate to processes such as delamination and dripping. Consequently, it is unclear whether the Lewisian ultramafic–mafic rocks and brown gneisses represent products of plate margin or intraplate magmatism. Although a subduction-related origin is possible, we propose that an intraplate origin is equally plausible. If the second alternative is correct, the ultramafic–mafic rocks and brown gneisses may represent the remnants of intracratonic greenstone belts that sank into the deep crust due to their density contrast with the underlying partially molten low viscosity TTG orthogneisses
    corecore