
4th NASA Symposium on VLSI Design 1992 " & •* ** -»- 4 J. g > 6 3 j

HDL to Verification Logic Translator
J. W. Gambles and P. J. Windley

NASA Space Engineering Research Center for VLSI Systems Design
University of Idaho, Moscow, Idaho 83843

jgambles@groucho.mrc.uidaho.edu, 208-885-9041
windley@panther.cs.uidaho.edu, 208-885-6501

Abstract -The increasingly higher number of transistors possible in VLSI circuits
compounds the difficulty in insuring correct designs. As the number of possible
test cases required to exhaustively simulate a circuit design explodes, a better
method is required to confirm the absence of design faults. Formal verification
methods provide a way to prove, using logic, that a circuit structure correctly
implements its specification. Before verification is accepted by VLSI design engi-
neers, the stand alone verification tools that are in use in the research community
must be integrated with the CAD tools used by the designers.

One problem facing the acceptance of formal verification into circuit design
methodology is that the structural circuit descriptions used by the designers
are not appropriate for verification work and those required for verification lack
some of the features needed for design. We offer a solution to this dilemma:
an automatic translation from the designers' HDL models into definitions for
the higher-ordered logic (HOL) verification system. The translated definitions
become the low level basis of circuit verification which in turn increases designers
confidence in the correctness of higher level behavioral models.

1 Introduction

As higher transistor counts increase the complexity of VLSI circuits and the number of
potential test cases explode, traditional simulation methods can expose only a fraction of
design faults - not guarantee their absence. Formal verification methods, which prove circuit
correctness, will play an important role in design fault exclusion. It is common in modern
design methodologies to utilize abstract circuit models in a hierarchical design:

• An architectural model (i.e. highly abstract) can be used to simulate an entire system,
at an early date, to help confirm that the system specification truly meets the customers
needs.

• In a top-down design, a model of the system's architecture is refined to a less abstract
model, and this decomposition process proceeds iteratively from algorithmic descrip-
tion, to large functional blocks, to detailed logic, and right down to the circuit level.

• After the circuit structure is modeled and designed, the logic simulation of complex
systems can become very slow. Simulations run faster using behavioral models.

A problem with these design approaches is that there is no formal way to relate a circuit's
structural model to its abstract behavioral model. Formal verification allows these models

https://ntrs.nasa.gov/search.jsp?R=19940017244 2020-06-16T19:06:44+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42789221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6.3.2

to be related through mathematical analysis so that designers can enjoy increased confidence
that behavioral models are correct abstractions of their structure. Before formal verification
is accepted by design engineers, stand alone verification tools that are used in academic
research must be integrated with the CAD tools used by VLSI designers.

The hardware description languages (HDL) used by VLSI CAD tools can provide the
link between these tools and the verification environment. Engineers can design using their
HDL and the models can be automatically translated for use in the verification tool. The
translation process consists of two steps.

• Recognizing the syntax of the HDL.

• Constructing the translation from the syntax to the HDL's semantic domain.

The parser, for recognizing the syntax, and the translation semantic construction functions
can be built directly into the verification system.

The NOVA simulation engine, one of the CAD tools being developed and used at the
NASA Space Engineering Research Center (SERC) for VLSI Systems Design, located on
the University of Idaho campus, uses the BOLT (Block Oriented Logic Translator) HDL.
BOLT was chosen for this research because it provides ready access to many real-world VLSI
designs at the SERC. This paper presents a translator from BOLT to the HOL theorem
proving system.

Much has been published about theories for modeling MOS circuits in a verification
environment [4, 5, 7, 11,15]. Our work linking verification with VLSI design tools is related,
but has a different motivation. While we are concerned that the model accurately reflect
the true behavior of the devices being specified, we must also be concerned that the HOL
circuit primitive definitions are consistent with the BOLT primitives used in NOVA. Correct
modeling of MOS circuits requires a complex multi-valued, multi-strength data type for
signal values[3]. Reasoning about such a signal value system can be done in HOL, where the
signal value type (STATE) definition and a collection of theorems about manipulating STATE
values is known collectively as the STATE theory[6]. Other work has been published dealing
with translating HDLs to verification logics [2, 14]. Our interest in tying HOL to the NOVA
simulator has motived our work to include lower level structures (i.e. multi-strength signal
values and their resolution functions) where these problems have been largely ignored by
others.

2 HOL

HOL, an acronym for higher-order logic, is a general theorem proving system developed at the
University of Cambridge [4, 8] based on Church's theory of simple types. Higher-order logic is
suitable for specifying all aspects of hardware, including both structure and behavior [8, 10].
In using higher-order logic, predicates are defined to represent both circuit primitives and
behavioral definitions [4]. First-order logic is well suited to represent simple combinational
circuits, but not sequential circuits. In higher-order logic, variables are allowed to range over
functions and predicates, which makes it possible to represent sequential circuit behavior

4th NASA Symposium on VLSI Design 1992 6.3.3

[10]. HOL is not an automated theorem prover but is more than simply a proof checker. It
could, more appropriately, be called a proof assistant.

The HOL system is implemented on top of Cambridge LCF, which is a direct descendant
of the work of Robin Milner [8]. Milner originally developed an approach to mechanizing
logic for a system called Logic of Computable Functions (LCF) designed for reasoning about
higher-order recursively defined functions. The LCF meta-language is called ML, a functional
programming language.

3 The BOLT to HOL Translator

The BOLT to HOL translator is comprised of a syntax parser, built using a parser-generator
tool included with version 2.0 of the HOL system[13], and a set of ML functions that con-
struct the semantics of the parsed BOLT syntax into HOL definition terms. The semantic
construction functions were written ad hoc.

3.1 The Syntax Parser

The parser-generator takes as input a grammar representing the formal syntax of BOLT
given in a modified Backus Naur Form (BNF) notation similar to Prolog's definite clause
grammar (DCG) [13]. The output of the generator is a ML program that recognizes the
HDL syntax and makes appropriate calls to the ML semantic construction functions, whose
names are included as action symbols in the input grammar. The BOLT syntax is defined in
[1]. The HOL parser-generator library developed at the University of Cambridge was found
to be very useful in building the syntax recognizer portion of the translator. For example
the syntax of a statement-body, as given in the BOLT manual, is:

BEGIN

[{ Module-Invocation I Case-Statement } ...]

END ;

Where upper-case words are keywords, the expression [] contains an optional item that
may be omitted, { } indicates choose one of the enclosed items, and ... indicates that
an item may be repeated any number of times is entered into the parser-generator input
grammar as the following recursive production:

statement_body —> [BEGIN] invocation.list [END] [;3

invocation_list —> mod_invocation invocation_list I
case.statement invocation_list I
D.

6.3.4

3.2 The Semantic Construction Functions

Because no formal semantic definitions for BOLT exist, the semantic construction functions
have been initially written in an ad hoc fashion. In order to construct a HOL definitional
translation the following data from the BOLT module is required:

1. The module name from the BOLT module declaration. The same name is used for the
HOL definition.

2. The set of ports declared to be external to the top module in the BOLT declaration.
The signals on these ports must be universally quantified in the HOL definition.

3. The names of the component modules that are invoked inside the BOLT module.
Each of these module invocations will cause an identically named HOL predicate to be
conjoined in the HOL definition predicate.

4. The set of ports declared to be an output of any invoked module. This set will be used
to determine the signals that are driven by more than one device. A JOIN predicate
must be added to the HOL definition to resolve all interconnected outputs. This set will
also be used in the identification of the internal ports that are to be hidden. In BOLT,
the ports are not explicitly declared to be module input or outputs. By convention
the outputs are listed before the module name and the inputs are listed following the
module name. Our translator relies on conformance to this convention.

5. The set of ports declared to be an input to any invoked module. The union of this set
and the set of invoked module output ports defines the set of all ports in the module.
The set difference of the set of all ports minus the set of externally declared ports is
used to define the set of internal signals that must be existentially quantified in the
HOL definition.

6. The only module parameter with any meaning to our translation is the STR parameter,
which in BOLT is used to define the output strength of an invoked module. If no STR
parameter is included in the module invocation then the default strength is active.

As the BOLT syntax is parsed, the ML functions construct a data structure from the parsed
tokens. It is this structure that is used for the creation of the HOL definition terms once the
BOLT module END; statement is found. As the BOLT syntax is parsed, the ML functions
construct a data structure from the parsed tokens. It is this structure that is used for the
creation of the HOL definition terms once the BOLT module END; statement is parsed. The
data structure is implemented as a list of lists of lists of strings. The form of the structure
is:

Structure = head : Header] body : Body
Header = name : Identifier; ext-out, extjn, intjout, intjn : Nodes

Identifier = id: String
Nodes = Identifiers*

Body = Invocation*
Invocation = name : Identifier; out,in : Nodes; param : STR

STR = Identifier*

4th NASA Symposium on VLSI Design 1992 6.3.5

nl r£nvl

-qn

Inv2

Figure 1: Latch Schematic

In this grammar, the asterisk ("Kleene star") has the standard language theory meaning —
a list with zero, one, or more elements [12]. The plus means a list with one or more elements.
The first sublist is the header part. It contains the module name and node lists corresponding
to the external outputs, external inputs, internal outputs, and internal inputs. The body
part is a list of component module invocations. Each invocation contains a module name, a
list of output ports, a list of input ports, and a possibly empty paramenter list containing
device output strength information. An example structure is shown in Section 4.5.

As each new module invocation is parsed, the module name, output node names, input
node names, and optional output strength parameters are added to .the data structure.
Additionally, a check is made to see if the invoked module output node(s) are already a
member of the set of internal output nodes for the current module. If it is, then two outputs
are connected to drive the signal value on that node and a join resolution function from
the STATE theory is required[6]. The join function is added by renaming the first instance
of that output node name to the decorated (primed) variation of the name and the current
invocation output is given the double-decorated node name variation. An invocation of JOIN
is then added to the end of the data structure where the output of the JOIN is the original
node name and the inputs are the new decorated and double-decorated nodes. If either the
decorated or double-decorated names are already used then the first two unused decoration
variations are added. A new blank sub-list is also appended to the end of the structure in
anticipation of the next module invocation.

When the END; statement is encountered, the set of external output nodes unioned with
the external input nodes are universally quantified in the resulting HOL definition. The
set of internal nodes subtract the external nodes are existentially quantified (hidden). HOL
terms are then generated by matching each invoked module with a previously defined HOL
constant whose name and type both match the structure built by the parser and construction
functions. The terms from all of the invoked modules are conjoined to complete the HOL
definition for the current module. A stack is maintained for current module data structures
so that embedded BOLT modules can be properly defined and translated.

4 Translator Demonstration

A data latch, implemented with gate level and pass transistor primitives, is used to demon-
strate the translator (Figure 1). This circuit is interesting because without a signal value

6.3.6

representation and resolution function that realizes output dominance this circuit cannot be
correctly modeled. Fundamental to the operation of this circuit is that the output strength
of pass-transistor Ml dominates the output of inverter Inv2 to force node nl to the state of
the input d while the gate g is 1 (high voltage). The feedback inverter Inv2 acts to store the
state, by dominating the pass-transistor after the gate goes to 0, turning the transistor off.

4.1 The BOLT Structural Description

A BOLT description of the latch is:

MODULE qn .LATCH g d;
BEGIN
nl .NTRAN g d;
qn .IHVR nl;
nl .INVR qn (STR='RR');

END;

The STR=' RR' parameter in the second . INVR invocation defines the output strength of that
inverter as resistive. The default value used for the first invocation is active.

4.2 Simulating the Latch

The operation of the latch can be tested by exercising it with the NOVA simulator. The
LATCH module was run in NOVA with the following waveforms on the g and d inputs:

g

d

i i i i i i i i i i i i i I

The resulting simulator output is shown in Table 1, where the symbol 1 represents laa, 0
represents Oaa, and X represents Xaa.

4.3 The HOL Circuit Primitives

The latch structure includes three predicate definitions; a NMOS-transistor element, inverter
element, and the JOIN operation. These primitive element definitions must be made in HOL
before they can be used in a translation from BOLT. In HOL, time is represented as a
stream of natural numbers (num), the signal values are defined to be of type STATE, and
circuit signals are defined to be functions of type (num —» STATE).

A simplified transistor model is used defining that the signal at the source is equal to the
signal at the drain if the gate is a one, else it is Nil.

4th NASA Symposium on VLSI Design 1992 6.3.7

q
g d n
* * *

00001>0 0 X
00002>0 0 X
00003>0 1 X
00004>0 0 X
00005>1 0 1
00006>1 1 0
00007>1 0 1
00008>1 1 0
00009>0 1 0
00010>0 0 0

q
g d n
* * *

00011>0 1 0
00012>0 0 0
00013>1 0 1
00014>1 1 0
00015>1 0 1
00016>1 0 1
00017>0 0 1
00018>0 1 1
00019>0 0 1
00020>0 0 1

Table 1: Latch Simulation Data

\-def KTRAN (s.g.d) =
(V t.

s t = (((g t =laa)V(g t =lar)V
(g t =lrr)V(g t =laf)V
(g t =lrf)V(g t =lff)) d t |

Nil))

The inverter predicate definition has five arguments. The first three arguments are of
type STATE and define the possible inverter output values (i.e. the ouput strength). The
first is the output STATE for a true state, the second for a false output, and the third the
unknown state. The unknown output value is derived from the strongest 1 and 0 strengths.
The fourth and fifth arguments are signal functions of type (num —> STATE). The fourth is
the inverter output and the fifth is the input.

\-def IHVR Is Os Xs (out, in) =
(V t.

out t = (((in t =laa)V(in t =lar)V
(in t =lrr)V(in t =laf)V
(in t =lrf)V(in t

(((in t =Oaa)V(in t
(in t =Orr)V(in t

=lif))
=Oar)V
=Oaf)V

(in t =Orf)V(in t =0ff))

Os

Is \
Xs)))

4.4 JOIN
The JOIN predicate performs two tasks. It determines the resulting signal value of resolving
the combination of circuit outputs by applying the join function from the STATE theory. The
second task is related to the sequential behavior of a charge storage node. The capacitance
of a node may result in a time delay when the node is driven to a new signal level. The

6.3.8

delay increases as the capacitance increases or as the strength of the driving signal decreases.
This sequential behavior is modeled as having a variable delay, whose length is based on the
strength of the join function result. [5, 9].

The JOIN used in the latch is modeled as having two possible delays. When the pass-
transistor is turned on, the storage node at the join is driven by an active strength and the
delay is denned to be zero. When the pass-transistor is turned off, the storage node is driven
by the resistive strength of the feed-back inverter and the delay is denned to be one.

\-def JOIN (s.s'.s") =
(V t. let sig = join (s' t) (s" t) in

(((sig = Oaa) V
(sig = laa) V
(sig = Xaa) V
(sig = Xar) V
(sig = Xra)) - (s t = sig) |

(s (t+1) = sig)))

4.5 The Translation of the Structural Specification

The HOL structural specification is obtained by translating the BOLT description. The
translator may be invoked to operate on a file containing the BOLT description or on BOLT
text included between the keywords BEGIN-BOLT and END_BOLT within the HOL operating
environment. The result of translating the cell description is:

BEGIN-BOLT
MODULE qn .LATCH g d;
BEGIN
nl .NTRAN g d;
qn .INVR nl;
nl .INVR qn (STR='RR');

END;
END-BOLT

\-def LATCH (qn.g.d) =
(3 nl nl' nl".

NTRAN (nl'.g.d) A
INVR laa Oaa Xaa (qn.nl) A
INVR Irr Orr Xrr (nl",qn) A
JOIN (nl.nl',nl"))

The data structure built by the parser and construction functions is:

4th NASA Symposium on VLSI Design 1992 6.3.9

[[['LATCH'];
['qn'];
['g'; 'd'];
['nl'; 'qn'; "nl"; 'nl'"];
['g'; 'd'; 'nl'; 'qn']];
[['NTRAN']; ['nl"]; ['g'; 'd'] ; D] ;
[['IHVR']; ['qn']; ['nl']; D] ;
[['INVR']; ['nl'"]; ['qn']; ['R'; 'R']];
[['JOIN']; ['nl']; ['nl"; 'nl'"]; Q];
[[]; D; D; D]]
: string list list list

4.6 The Behavioral Description

When the gate of the pass-transistor is true the latch is enabled and the output, qn, follows
as the inverse of d. When the gate is false the latch stores the previous data. It is desirable
to simplify the description as much as possible at each level. At the behavioral level the
operation no longer depends on a device's output charge sourcing ability so this specification
is written in terms of boolean signal values, not the more complex STATE data type. The
HOL behavioral description is:

hde/ LATCH.SPEC (qn.g.d) =
(V t.

(g t -+ (qn t = -.d t) |
(qn (t+1) = qn t)))

4.7 The Latch Verification

The proper operation of the latch requires that the output of the pass-transistor dominate
the resistive strength output of INV2. The pass-transistor is not an amplifier so there is a
validity condition that the signal applied to input d must be stronger than resistive.

Is_bool_active (d) =
(V t. (d t = laa) V (d t = Oaa))

Because the behavior of the latch is denned only for boolean value signals at the gate, there
is a validity condition for the gate that it be either a 1 or 0 state. This condition yields a
12 way case analysis in the proof that is easily reduced to considering only the two cases of
enabled and latching.

6.3.10

\~de] IS_boOl

(V t.
(gt =
(gt =(gt =
(gt =
(gt =
(g t =

(g) =
laa)
Irr)
Irf)
Oaa)
Orr)
Orf)

V
V
V
V
V
V

(g
(g
(g
(g
(g
(g

t =
t =
t =
t =
t =
t =

lar)
laf)
Iff)
Oar)
Oaf)
Off))

V
V
V
V
V

The verification of the latch entails proving that the latch structural description and validity
conditions logically imply the behavioral specification. Because the latch behavorial speci-
fication is defined in terms of boolean values the signal functions must be composed with a
STATE abstraction function from the STATE theory[6]. The theorem proven is:

I- ((Is_bool_active (d) A
Is_bool (g) A

LATCH (qn.g.d)) =»
LATCH_SPEC (STATES_ABS o qn,

STATES_ABS o g,
STATES_ABS o d))

5 Future Work

The BOLT to HOL translator presented in this paper represent an important step in inte-
grating formal verification with CAD tool environments. Future steps include:

1. Expanding and validating the library of HOL definitions corresponding to the primitive
components in the NOVA library.

2. Developing an abstract syntax and denotational semantics for the circuit structure
level of HDLs.

3. Using the abstract syntax and denotational semantics, developing a translator genera-
tor that will, given a grammar representing the concrete syntax of a HDL, automatically
create a translation program for that HDL.

4. Integrating the circuit structure level translation work with the results of other on-
going research aimed at HDL behavioral model levels to create a complete link between
HDL's and verification logics.

6 Conclusion

The goal of our work is to improve CAD functional fault exclusion techniques for VLSI design
by making the use of formal circuit verification at the transistor and gate level tractable.
In this paper we have described and demonstrated a translator for moving circuit structure

4th NASA Symposium on VLSI Design 1992 6.3.11

descriptions from the realm of the CAD design tool to formal verification. This is an impor-
tant step facilitating the development of correct designs as VLSI circuits become increasingly
complex.

7 Acknowledgements

This research was supported in part by NASA under Space Engineering Research Grant
NAGW-1406 and by the NSF under Research Initiation Grant MIP-9109618.

References

[1] AMI: A Subsidiary of Gould Inc. BOLT Users Manual.

[2] R. Boulton, M. Gordon, J. Herbert, and J. van Tassel. "The HOL Verification of ELLA
Designs". In 1991 International Workshop on Formal Verification in VLSI Design,
Miami, January 1991.

[3] K. B. Cameron and J. C. Shovic. "Calculating Minimum Logic State Requirements
for Multi-Strength Multi-Value MOS Logic Simulators". In 1987 IEEE International
Conference on Computer Design: VLSI in Computers & Processors, pages 672-675,
Rye Brook, New York, October 1987. IEEE Computer Society Press.

[4] A. Camilleri, M. Gordon, and T. Melham. "Hardware Verification Using Higher Order
Logic". In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct Cir-
cuit Designs, pages 43-67. Elsevier Scientific Publishers (North-Holland), 1987. Also
Technical Report No. 91, University of Cambridge Computer Laboratory, September,
1986.

[5] I. S. Dhingra. "Formal Validation of An Integrated Circuit Design Style". In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification and
Synthesis, pages 293-321. Kluwer Academic Publishers, Boston, 1988. Also Technical
Report No. 115, University of Cambridge Computer Laboratory, August, 1987.

[6] J. W. Gambles and P. J. Windley. "A Verification Logic Representation of Indetermin-
istic Signal States". In Third NASA Symposium on VLSI Design, pages 10.2.1-10.2.12,
Moscow, Idaho, October 1991. NASA Space Engineering Research Center, University
of Idaho.

[7] M. J. C. Gordon. "Why Higher Order Logic is a Good Formalism for Specifying and
Verifying Hardware". In G. J. Milne and P. A. Subrahmanyam, editors, Formal Aspects
of VLSI Design, pages 153-177. Elsevier Scientific Publishers (North-Holland), 1986.
Also Technical Report No. 77, University of Cambridge Computer Laboratory, 1985.

[8] M. J. C. Gordon. "HOL: A Proof Generating System for Higher-Order Logic". In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification and

6.3.12

Synthesis, pages 73-128. Kluwer Academic Publishers, Boston, 1988. Also Technical
Report No. 103, University of Cambridge Computer Laboratory, August, 1987.

[9] J. P. Hayes. "A Unified Switching Theory with Applications to VLSI Design". Proceed-
ings of the IEEE, Vol. 70(No. 10):1140-1151, October 1982.

[10] T. F. Melham. "Abstraction Mechanisms for Hardware Verification". In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages
267-291. Kluwer Academic Publishers, Boston, 1988. Also Technical Report No. 106,
University of Cambridge Computer Laboratory, May, 1987.

[11] T. F. Melham. "Using Recursive Types to Reason About Hardware Verification". In
G. Milne, editor, Design for Behavioural Verification, Glosgow, July 1988. IFIP WG
10.2. Also Technical Report No. 135, University of Cambridge Computer Laboratory,
May, 1988.

[12] B. Meyer. Introduction To The Theory Of Programming Languages. Prentice Hall
International, 1990.

[13] J. P. van Tassel. The HOL Parser Library. University of Cambridge Computer Labo-
ratory, July 1991.

[14] J. P. van Tassel and D. Hemmendinger. "Toward Formal Verification of VHDL Spec-
ifications". In L. Claesen, editor, Applied Formal Methods For Correct VLSI Design,
pages 261-270, Houthalen, Belgium, November 1989. IMEC-IFIP WG 10.2/WG 10.5,
Elsevier Scientific Publishers (North-Holland).

[15] G. Winskel. "A Compositional Model of MOS Circuits". In G. Birtwistle and P. A.
Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages 323-347.
Kluwer Academic Publishers, Boston, 1987. Also Technical Report No. 105, University
of Cambridge Computer Laboratory, 1987.

