46 research outputs found
Recommended from our members
The use of extra-galactic star formation tracers on star forming regions in the Milky Way
We studied three groups of star forming clouds in the Milky Way: 5 clouds from Spitzer c2d Legacy survey, 10 clouds from Gould Belt survey, and 32 massive dense clumps. We determined the total diffuse 24[Greek letter mu] emission for each cloud and calculated the corresponding SFR using an extragalactic relation. Then the resulting SFRs were compared with SFRs calculated using the method of counting number of YSOs for c2d and Gould Belt clouds and using total infrared luminosity for massive dense clumps. The comparison shows quite a good correlation for the massive dense clumps, which are high-mass star forming regions, with the average ratio of SFR(L_IR)/SFR(25[Greek letter mu]) = 0.896+/-0.663. The result for low-mass star forming clouds (c2d and Gould Belt) shows very little to no correlation between L_24[Greek letter mu] and SFR(YSO count). Comparing 24[Greek letter mu] images with extinction maps shows that a significant portion of 24[Greek letter mu] emission does not come from star-forming regions in the cloud.Astronom
Testing 24 micron and Infrared Luminosity as Star Formation Tracers for Galactic Star Forming Regions
We have tested some relations for star formation rates used in extra-galactic
studies for regions within the Galaxy. In nearby molecular clouds, where the
IMF is not fully-sampled, the dust emission at 24 micron greatly underestimates
star formation rates (by a factor of 100 on average) when compared to star
formation rates determined from counting YSOs. The total infrared emission does
no better. In contrast, the total far-infrared method agrees within a factor of
2 on average with star formation rates based on radio continuum emission for
massive, dense clumps that are forming enough massive stars to have the total
infrared luminosity exceed 10^4.5 Lsun. The total infrared and 24 micron also
agree well with each other for both nearby, low-mass star forming regions and
the massive, dense clumps regions
The VIRUS-P Exploration of Nearby Galaxies (VENGA): Survey Design, Data Processing, and Spectral Analysis Methods
We present the survey design, data reduction, and spectral fitting pipeline
for the VIRUS-P Exploration of Nearby Galaxies (VENGA). VENGA is an integral
field spectroscopic survey, which maps the disks of 30 nearby spiral galaxies.
Targets span a wide range in Hubble type, star formation activity, morphology,
and inclination. The VENGA data-cubes have 5.6'' FWHM spatial resolution, ~5A
FWHM spectral resolution, sample the 3600A-6800A range, and cover large areas
typically sampling galaxies out to ~0.7 R_25. These data-cubes can be used to
produce 2D maps of the star formation rate, dust extinction, electron density,
stellar population parameters, the kinematics and chemical abundances of both
stars and ionized gas, and other physical quantities derived from the fitting
of the stellar spectrum and the measurement of nebular emission lines. To
exemplify our methods and the quality of the data, we present the VENGA
data-cube on the face-on Sc galaxy NGC 628 (a.k.a. M 74). The VENGA
observations of NGC 628 are described, as well as the construction of the
data-cube, our spectral fitting method, and the fitting of the stellar and
ionized gas velocity fields. We also propose a new method to measure the
inclination of nearly face-on systems based on the matching of the stellar and
gas rotation curves using asymmetric drift corrections. VENGA will measure
relevant physical parameters across different environments within these
galaxies, allowing a series of studies on star formation, structure assembly,
stellar populations, chemical evolution, galactic feedback, nuclear activity,
and the properties of the interstellar medium in massive disk galaxies.Comment: Accepted for publication in AJ, 25 pages, 18 figures, 6 table
The Herschel Exploitation of Local Galaxy Andromeda (HELGA). VI. The distribution and properties of molecular cloud associations in M31
In this paper we present a catalog of Giant Molecular Clouds (GMCs) in the An- dromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy An- dromeda (HELGA) dataset. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterise the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al (2012). 326 GMCs in the mass range 104 − 107 M⊙ are identified, their cumulative mass distribution is found to be proportional to M −2.34 in agreement with earlier studies. The GMCs appear to follow the same cloud mass to LCO correlation observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit suggesting that we are observing associations of GMCs. Following Gordon et al. (2006), we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8fdg9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system
Source clustering in the Hi-GAL survey determined using a minimum spanning tree method
The aims are to investigate the clustering of the far-infrared sources from the Herschel infrared Galactic Plane Survey (Hi-GAL) in the Galactic longitude range of 71 to 67 deg. These clumps, and their spatial distribution, are an imprint of the original conditions within a molecular cloud. This will produce a catalogue of over-densities. Methods. The minimum spanning tree (MST) method was used to identify the over-densities in two dimensions. The catalogue was further refined by folding in heliocentric distances, resulting in more reliable over-densities, which are cluster candidates. Results. We found 1633 over-densities with more than ten members. Of these, 496 are defined as cluster candidates because of the reliability of the distances, with a further 1137 potential cluster candidates. The spatial distributions of the cluster candidates are different in the first and fourth quadrants, with all clusters following the spiral structure of the Milky Way. The cluster candidates are fractal. The clump mass functions of the clustered and isolated are statistically indistinguishable from each other and are consistent with Kroupa’s initial mass function
Recommended from our members
Star formation in molecular clouds
textThere has been many recent observations in the area of star formation. High-resolution observations of other galaxies enabled a study of extragalactic star formation in more detailed while large scale surveys of the Milky Way enabled a more comprehensive study of Galactic star formation. The main goal of this thesis is to use multi-wavelength, large-scale observations of the Milky Way to connect Galactic to extragalactic star formation and to study star formation regulation in molecular clouds. We tested the use of extragalactic star formation rate tracers on nearby molecular clouds and found that the total infrared and 24 μm luminosity underestimate star formation rates of nearby molecular clouds by a large factor, indicating a problem of using extragalactic tracers of star formation on small regions and regions with low mass or low star formation rates. We studied the relation between star formation and molecular gas distribution in a 11 square degree of the Galactic Plane on various spatial scales starting from a clump scale of around few parsecs to a scale of ≈ 200 parsec. The result shows a good correlation between molecular gas and star formation on a scale above ≈ 5 − 8′. The star formation relation that is seen on disk-averaged scales in other galaxies shows a large scatter on the small scales. We built a catalog of Galactic molecular clouds with measured star formation rates and studied the relations between properties of molecular clouds and star formation. We tested several models of star formation on the catalog of molecular clouds. We found that the dense gas mass shows significant correlations with star formation rates but the depletion time of dense gas varies with other properties of the clouds. We found that the free- fall efficiency is higher in dense gas compared to the general molecular gas of the clouds.Astronom
A Study of Differential Rotation on Pegasi Via Photometric Starspot Imaging
We present the results of a study of differential rotation on the K2 IV primary of the RS CVn binary II Pegasi (HD 224085) performed by inverting light curves to produce images of the dark starspots on its surface. The data were obtained in the standard Johnson B and V filter passbands via the Tennessee State University T3 0.4 m Automated Photometric Telescope from JD 2447115.8086-2455222.6238 (1987 November 16-2010 January 26). The observations were subdivided into 79 data sets consisting of pairs of B and V light curves, which were then inverted using a constrained nonlinear inversion algorithm that makes no a priori assumptions regarding the number of spots or their shapes. The resulting surface images were then assigned to 24 groups corresponding to time intervals over which we could observe the evolution of a given group of spots (except for three groups consisting of single data sets). Of these 24 groups, six showed convincing evidence of differential rotation over time intervals of several months. For the others, the spot configuration was such that differential rotation was neither exhibited nor contraindicated. The differential rotation we infer is in the same sense as that on the Sun: lower latitudes have shorter rotation periods. From plots of the range in longitude spanned by the spotted regions versus time, we obtain estimates of the differential rotation coefficient k defined as in earlier work by Henry et al. and show that our results for its value are consistent with the value obtained therein