149 research outputs found

    A multi-center milestone study of clinical vertebral CT segmentation

    Get PDF
    A multiple center milestone study of clinical vertebra segmentation is presented in this paper. Vertebra segmentation is a fundamental step for spinal image analysis and intervention. The first half of the study was conducted in the spine segmentation challenge in 2014 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Computational Spine Imaging (CSI 2014). The objective was to evaluate the performance of several state-of-the-art vertebra segmentation algorithms on computed tomography (CT) scans using ten training and five testing dataset, all healthy cases; the second half of the study was conducted after the challenge, where additional 5 abnormal cases are used for testing to evaluate the performance under abnormal cases. Dice coefficients and absolute surface distances were used as evaluation metrics. Segmentation of each vertebra as a single geometric unit, as well as separate segmentation of vertebra substructures, was evaluated. Five teams participated in the comparative study. The top performers in the study achieved Dice coefficient of 0.93 in the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine for healthy cases, and 0.88 in the upper thoracic, 0.89 in the lower thoracic and 0.92 in the lumbar spine for osteoporotic and fractured cases. The strengths and weaknesses of each method as well as future suggestion for improvement are discussed. This is the first multi-center comparative study for vertebra segmentation methods, which will provide an up-to-date performance milestone for the fast growing spinal image analysis and intervention

    Short-Term Therapies for Treatment of Acute and Advanced Heart Failure—Why so Few Drugs Available in Clinical Use, Why Even Fewer in the Pipeline?

    Get PDF
    Both acute and advanced heart failure are an increasing threat in term of survival, quality of life and socio-economical burdens. Paradoxically, the use of successful treatments for chronic heart failure can prolong life but—per definition—causes the rise in age of patients experiencing acute decompensations, since nothing at the moment helps avoiding an acute or final stage in the elderly population. To complicate the picture, acute heart failure syndromes are a collection of symptoms, signs and markers, with different aetiologies and different courses, also due to overlapping morbidities and to the plethora of chronic medications. The palette of cardio- and vasoactive drugs used in the hospitalization phase to stabilize the patient’s hemodynamic is scarce and even scarcer is the evidence for the agents commonly used in the practice (e.g., catecholamines). The pipeline in this field is poor and the clinical development chronically unsuccessful. Recent set backs in expected clinical trials for new agents in acute heart failure (AHF) (omecamtiv, serelaxine, ularitide) left a field desolately empty, where only few drugs have been approved for clinical use, for example, levosimendan and nesiritide. In this consensus opinion paper, experts from 26 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Israel, Italy, The Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, Turkey, U.K. and Ukraine) analyse the situation in details also by help of artificial intelligence applied to bibliographic searches, try to distil some lesson-learned to avoid that future projects would make the same mistakes as in the past and recommend how to lead a successful development project in this field in dire need of new agents

    Short-Term Therapies for Treatment of Acute and Advanced Heart Failure—Why so Few Drugs Available in Clinical Use, Why Even Fewer in the Pipeline?

    Get PDF
    Both acute and advanced heart failure are an increasing threat in term of survival, quality of life and socio-economical burdens. Paradoxically, the use of successful treatments for chronic heart failure can prolong life but—per definition—causes the rise in age of patients experiencing acute decompensations, since nothing at the moment helps avoiding an acute or final stage in the elderly population. To complicate the picture, acute heart failure syndromes are a collection of symptoms, signs and markers, with different aetiologies and different courses, also due to overlapping morbidities and to the plethora of chronic medications. The palette of cardio- and vasoactive drugs used in the hospitalization phase to stabilize the patient’s hemodynamic is scarce and even scarcer is the evidence for the agents commonly used in the practice (e.g., catecholamines). The pipeline in this field is poor and the clinical development chronically unsuccessful. Recent set backs in expected clinical trials for new agents in acute heart failure (AHF) (omecamtiv, serelaxine, ularitide) left a field desolately empty, where only few drugs have been approved for clinical use, for example, levosimendan and nesiritide. In this consensus opinion paper, experts from 26 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Israel, Italy, The Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, Turkey, U.K. and Ukraine) analyse the situation in details also by help of artificial intelligence applied to bibliographic searches, try to distil some lesson-learned to avoid that future projects would make the same mistakes as in the past and recommend how to lead a successful development project in this field in dire need of new agents

    Dynamic flow synthesis of porous organic cages

    Get PDF
    The dynamic covalent synthesis of two imine-based porous organic cages was successfully transferred from batch to continuous flow. The same flow reactor was then used to scramble the constituents of these two cages in differing ratios to form cage mixtures. Preparative HPLC purification of one of these mixtures allowed rapid access to a desymmetrised cage molecule.We thank the Engineering and Physical Sciences Research Council (EPSRC) for financial support under the Grants EP/H000925/1 (AIC), EP/K009494/1 (SVL) and EP/M004120/1 (SVL), and Pfizer Worldwide Research & Development (CB). The authors would like to thank EPSRC Dial-a-Molecule Grand Challenge Network (EP/K004840/1) for funding a placement with SVL via the Interdisciplinary Mobility Funding scheme (AGS).This is the author accepted manuscript. The final version is available from RSC via http://dx.doi.org/10.1039/C5CC07447

    Repetitive use of levosimendan for treatment of chronic advanced heart failure: Clinical evidence, practical considerations, and perspectives: An expert panel consensus

    Get PDF
    Background The intravenous inodilator levosimendan was developed for the treatment of patients with acutely decompensated heart failure. In the last decade scientific and clinical interest has arisen for its repetitive or intermittent use in patients with advanced chronic, but not necessarily acutely decompensated, heart failure. Recent studies have suggested long-lasting favourable effects of levosimendan when administered repetitively, in terms of haemodynamic parameters, neurohormonal and inflammatory markers, and clinical outcomes. The existing data, however, requires further exploration to allow for definitive conclusions on the safety and clinical efficacy of repetitive use of levosimendan. Methods and results A panel of 30 experts from 15 countries convened to review and discuss the existing data, and agreed on the patient groups that can be considered to potentially benefit from intermittent treatment with levosimendan. The panel gave recommendations regarding patient dosing and monitoring, derived from the available evidence and from clinical experience. Conclusions The current data suggest that in selected patients and support out-of-hospital care, intermittent/repetitive levosimendan can be used in advanced heart failure to maintain patient stability. Further studies are needed to focus on morbidity and mortality outcomes, dosing intervals, and patient monitoring. Recommendations for the design of further clinical studies are made

    Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resting conventional 12-lead ECG has low sensitivity for detection of coronary artery disease (CAD) and left ventricular hypertrophy (LVH) and low positive predictive value (PPV) for prediction of left ventricular systolic dysfunction (LVSD). We hypothesized that a ~5-min resting 12-lead <it>advanced </it>ECG test ("A-ECG") that combined results from both the advanced and conventional ECG could more accurately screen for these conditions than strictly conventional ECG.</p> <p>Methods</p> <p>Results from nearly every conventional and advanced resting ECG parameter known from the literature to have diagnostic or predictive value were first retrospectively evaluated in 418 healthy controls and 290 patients with imaging-proven CAD, LVH and/or LVSD. Each ECG parameter was examined for potential inclusion within multi-parameter A-ECG scores derived from multivariate regression models that were designed to optimally screen for disease in general or LVSD in particular. The performance of the best retrospectively-validated A-ECG scores was then compared against that of optimized pooled criteria from the strictly conventional ECG in a test set of 315 additional individuals.</p> <p>Results</p> <p>Compared to optimized pooled criteria from the strictly conventional ECG, a 7-parameter A-ECG score validated in the training set increased the sensitivity of resting ECG for identifying disease in the test set from 78% (72-84%) to 92% (88-96%) (P < 0.0001) while also increasing specificity from 85% (77-91%) to 94% (88-98%) (P < 0.05). In diseased patients, another 5-parameter A-ECG score increased the PPV of ECG for LVSD from 53% (41-65%) to 92% (78-98%) (P < 0.0001) without compromising related negative predictive value.</p> <p>Conclusion</p> <p>Resting 12-lead A-ECG scoring is more accurate than strictly conventional ECG in screening for CAD, LVH and LVSD.</p

    Sympathoinhibitory effect of statins in chronic heart failure

    Get PDF
    Contains fulltext : 89087.pdf (publisher's version ) (Closed access)OBJECTIVES: Increased (central) sympathetic activity is a key feature of heart failure and associated with worse prognosis. Animal studies suggest that statin therapy can reduce central sympathetic outflow. This study assessed statin effects on (central) sympathetic activity in human chronic heart failure (CHF) patients. METHODS: Sympathetic activity was measured in eight patients with CHF patients during 8 weeks after discontinuation and 4 weeks after restart of statin therapy by microneurography for direct muscle sympathetic nerve recording (MSNA) and measurement of arterial plasma norepinephrine concentrations. RESULTS: During discontinuation of statin therapy, MSNA was significantly increased (73 +/- 4 vs. 56 +/- 5 and 52 +/- 6 bursts/100 beats, p = 0.01). Burst frequency was significantly higher after statin discontinuation (42 +/- 3 burst/min without statin vs. 32 +/- 3 and 28 +/- 3 burst/min during statin therapy, p = 0.004). Mean normalized burst amplitude and total normalized MSNA were significantly higher after statin discontinuation (mean normalized burst amplitude 0.36 +/- 0.04 without statin vs. 0.29 +/- 0.04 and 0.22 +/- 0.04 during statin, p < 0.05; total normalized MSNA 15.70 +/- 2.78 without statin, vs. 9.28 +/- 1.41 and 6.56 +/- 1.83 during statin, p = 0.009). Arterial plasma norepinephrine levels and blood pressure were unaffected. INTERPRETATION: Statin therapy inhibits central sympathetic outflow in CHF patients, as measured by MSNA.1 april 201

    A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure. an expert panel consensus

    Get PDF
    Inotropes aim at increasing cardiac output by enhancing cardiac contractility. They constitute the third pharmacological pillar in the treatment of patients with decompensated heart failure, the other two being diuretics and vasodilators. Three classes of parenterally administered inotropes are currently indicated for decompensated heart failure, (i) the beta adrenergic agonists, including dopamine and dobutamine and also the catecholamines epinephrine and norepinephrine, (ii) the phosphodiesterase III inhibitor milrinone and (iii) the calcium sensitizer levosimendan. These three families of drugs share some pharmacologic traits, but differ profoundly in many of their pleiotropic effects. Identifying the patients in need of inotropic support and selecting the proper inotrope in each case remain challenging. The present consensus, derived by a panel meeting of experts from 21 countries, aims at addressing this very issue in the setting of both acute and advanced heart failure
    corecore