77 research outputs found

    Aneuploidy Detection in Pigs Using Comparative Genomic Hybridization: From the Oocytes to Blastocysts

    Get PDF
    Data on the frequency of aneuploidy in farm animals are lacking and there is the need for a reliable technique which is capable of detecting all chromosomes simultaneously in a single cell. With the employment of comparative genomic hybridization coupled with the whole genome amplification technique, this study brings new information regarding the aneuploidy of individual chromosomes in pigs. Focus is directed on in vivo porcine blastocysts and late morulas, 4.7% of which were found to carry chromosomal abnormality. Further, ploidy abnormalities were examined using FISH in a sample of porcine embryos. True polyploidy was relatively rare (1.6%), whilst mixoploidy was presented in 46.8% of embryos, however it was restricted to only a small number of cells per embryo. The combined data indicates that aneuploidy is not a prevalent cause of embryo mortality in pigs

    Diagnosis, Prognosis and Treatment of Canine Cutaneous and Subcutaneous Mast Cell Tumors

    Get PDF
    Mast cell tumors (MCTs) are hematopoietic neoplasms composed of mast cells. It is highly common in dogs and is extremely important in the veterinary oncology field. It represents the third most common tumor subtype, and is the most common malignant skin tumor in dogs, corresponding to 11% of skin cancer cases. The objective of this critical review was to present the report of the 2nd Consensus meeting on the Diagnosis, Prognosis, and Treatment of Canine Cutaneous and Subcutaneous Mast Cell Tumors, which was organized by the Brazilian Association of Veterinary Oncology (ABROVET) in August 2021. The most recent information on cutaneous and subcutaneous mast cell tumors in dogs is presented and discussed

    A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific

    Get PDF
    peer-reviewedBackground: Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species.Background: Spermatozoa have a remarkable epigenResults: The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. Conclusions: These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis

    Sperm DNA fragmentation: A new guideline for clinicians

    Get PDF
    Sperm DNA integrity is crucial for fertilization and development of healthy offspring. The spermatozoon undergoes extensive molecular remodeling of its nucleus during later phases of spermatogenesis, which imparts compaction and protects the genetic content. Testicular (defective maturation and abortive apoptosis) and post-testicular (oxidative stress) mechanisms are implicated in the etiology of sperm DNA fragmentation (SDF), which affects both natural and assisted reproduction. Several clinical and environmental factors are known to negatively impact sperm DNA integrity. An increasing number of reports emphasizes the direct relationship between sperm DNA damage and male infertility. Currently, several assays are available to assess sperm DNA damage, however, routine assessment of SDF in clinical practice is not recommended by professional organizations

    Anchoring the CerEla1.0 Genome Assembly to Red Deer (Cervus elaphus) and Cattle (Bos taurus) Chromosomes and Specification of Evolutionary Chromosome Rearrangements in Cervidae

    No full text
    The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution

    X Chromosome-Specific Repeats in Non-Domestic Bovidae

    No full text
    Repetitive sequences form a substantial and still enigmatic part of the mammalian genome. We isolated repetitive DNA blocks of the X chromosomes of three species of the family Bovidae: Kobus defassa (KDEXr sequence), Bos taurus (BTAXr sequence) and Antilope cervicapra (ACEXr sequence). The copy numbers of the isolated sequences were assessed using qPCR, and their chromosomal localisations were analysed using FISH in ten bovid tribes and in outgroup species. Besides their localisation on the X chromosome, their presence was also revealed on the Y chromosome and autosomes in several species. The KDEXr sequence abundant in most Bovidae species also occurs in distant taxa (Perissodactyla and Carnivora) and seems to be evolutionarily older than BTAXr and ACEXr. The ACEXr sequence, visible only in several Antilopini species using FISH, is probably the youngest, and arised in an ancestor common to Bovidae and Cervidae. All three repetitive sequences analysed in this study are interspersed among gene-rich regions on the X chromosomes, apparently preventing the crossing-over in their close vicinity. This study demonstrates that repetitive sequences on the X chromosomes have undergone a fast evolution, and their variation among related species can be beneficial for evolutionary studies
    corecore