28 research outputs found

    In Vivo Trp Scanning of the Small Multidrug Resistance Protein EmrE Confirms 3D Structure Models

    No full text
    The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE

    CeRh1 (rhr-1) is a dominant Rhesus gene essential for embryonic development and hypodermal function in Caenorhabditis elegans

    No full text
    Rhesus (Rh) proteins share a conserved 12-transmembrane topology and specify a family of putative CO(2) channels found in diverse species from microbes to human, but their functional essentiality and physiological importance in metazoans is unknown. To address this key issue and analyze Rh-engaged physiologic processes, we sought to explore model organisms with fewer Rh genes yet are tractable to genetic manipulations. In this article, we describe the identification in nematodes of two Rh homologues that are highly conserved and similar to human Rh glycoproteins, and we focus on their characterization in Caenorhabditis elegans. RNA analysis revealed that CeRh1 is abundantly expressed in all developmental stages, with highest levels in adults, whereas CeRh2 shows a differential and much lower expression pattern. In transient expression in human cells, both CeRh1 and CeRh2-GFP fusion proteins were routed to the plasma membrane. Transgenic analysis with GFP or LacZ-fusion reporters showed that CeRh1 is mainly expressed in hypodermal tissue, although it is also in other cell types. Mutagenesis analysis using deletion constructs mapped a minimal promoter region driving CeRh1 gene expression. Although CeRh2 was dispensable, RNA interference with CeRh1 caused a lethal phenotype mainly affecting late stages of C. elegans embryonic development, which could be rescued by the CbRh1 homologue from the worm Caenorhabditis briggsae. Taken together, our data provide direct evidence for the essentiality of the CeRh1 gene in C. elegans, establishing a useful animal model for investigating CO(2) channel function by cross-species complementation
    corecore