1,003 research outputs found

    The promoter polymorphism -232C/G of the PCK1 gene is associated with type 2 diabetes in a UK-resident South Asian population

    Get PDF
    Background: The PCK1 gene, encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), has previously been implicated as a candidate gene for type 2 diabetes (T2D) susceptibility. Rodent models demonstrate that over-expression of Pck1 can result in T2D development and a single nucleotide polymorphism (SNP) in the promoter region of human PCK1 (-232C/G) has exhibited significant association with the disease in several cohorts. Within the UK-resident South Asian population, T2D is 4 to 6 times more common than in indigenous white Caucasians. Despite this, few studies have reported on the genetic susceptibility to T2D in this ethnic group and none of these has investigated the possible effect of PCK1 variants. We therefore aimed to investigate the association between common variants of the PCK1 gene and T2D in a UK-resident South Asian population of Punjabi ancestry, originating predominantly from the Mirpur area of Azad Kashmir, Pakistan. \ud \ud Methods: We used TaqMan assays to genotype five tagSNPs covering the PCK1 gene, including the -232C/G variant, in 903 subjects with T2D and 471 normoglycaemic controls. \ud \ud Results: Of the variants studied, only the minor allele (G) of the -232C/G SNP demonstrated a significant association with T2D, displaying an OR of 1.21 (95% CI: 1.03 - 1.42, p = 0.019). \ud \ud Conclusion: This study is the first to investigate the association between variants of the PCK1 gene and T2D in South Asians. Our results suggest that the -232C/G promoter polymorphism confers susceptibility to T2D in this ethnic group. \ud \ud Trial registration: UKADS Trial Registration: ISRCTN38297969

    Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    Get PDF
    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations

    The scale of population structure in Arabidopsis thaliana

    Get PDF
    The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales

    Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?

    Get PDF
    In this review, we explore the concept of ‘double diabetes’, a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice

    Statistical power considerations in genotype-based recall randomized controlled trials

    Get PDF
    Randomized controlled trials (RCT) are often underpowered for validating gene-treatment interactions. Using published data from the Diabetes Prevention Program (DPP), we examined power in conventional and genotype-based recall (GBR) trials. We calculated sample size and statistical power for genemetformin interactions (vs. placebo) using incidence rates, gene-drug interaction effect estimates and allele frequencies reported in the DPP for the rs8065082 SLC47A1 variant, a metformin transported encoding locus. We then calculated statistical power for interactions between genetic risk scores (GRS), metformin treatment and intensive lifestyle intervention (ILI) given a range of sampling frames, clinical trial sample sizes, interaction effect estimates, and allele frequencies; outcomes were type 2 diabetes incidence (time-to-event) and change in small LDL particles (continuous outcome). Thereafter, we compared two recruitment frameworks: GBR (participants recruited from the extremes of a GRS distribution) and conventional sampling (participants recruited without explicit emphasis on genetic characteristics). We further examined the influence of outcome measurement error on statistical power. Under most simulated scenarios, GBR trials have substantially higher power to observe gene-drug and gene-lifestyle interactions than same-sized conventional RCTs. GBR trials are becoming popular for validation of gene-treatment interactions; our analyses illustrate the strengths and weaknesses of this design

    Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: evidence of causal association from population studies

    Get PDF
    <p>Background: Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.</p> <p>Methods and Findings: We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.</p> <p>Conclusions: Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions.</p&gt

    A rare SNP in pre-miR-34a is associated with increased levels of miR-34a in pancreatic beta cells.

    Get PDF
    Open Access Article.Changes in the levels of specific microRNAs (miRNAs) can reduce glucose-stimulated insulin secretion and increase beta-cell apoptosis, two causes of islet dysfunction and progression to type 2 diabetes. Studies have shown that single nucleotide polymorphisms (SNPs) within miRNA genes can affect their expression. We sought to determine whether miRNAs, with a known role in beta-cell function, possess SNPs within the pre-miRNA structure which can affect their expression. Using published literature and dbSNP, we aimed to identify miRNAs with a role in beta-cell function that also possess SNPs within the region encoding its pre-miRNA. Following transfection of plasmids, encoding the pre-miRNA and each allele of the SNP, miRNA expression was measured. Two rare SNPs located within the pre-miRNA structure of two miRNA genes important to beta-cell function (miR-34a and miR-96) were identified. Transfection of INS-1 and MIN6 cells with plasmids encoding pre-miR-34a and the minor allele of rs72631823 resulted in significantly (p < 0.05) higher miR-34a expression, compared to cells transfected with plasmids encoding the corresponding major allele. Similarly, higher levels were also observed upon transfection of HeLa cells. Transfection of MIN6 cells with plasmids encoding pre-miR-96 and each allele of rs41274239 resulted in no significant differences in miR-96 expression. A rare SNP in pre-miR-34a is associated with increased levels of mature miR-34a. Given that small changes in miR-34a levels have been shown to cause increased levels of beta-cell apoptosis this finding may be of interest to studies looking at determining the effect of rare variants on type 2 diabetes susceptibility

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P &lt; 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations
    corecore