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A rare SNP in pre-miR-34a is associated with increased
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Abstract Changes in the levels of specific microRNAs

(miRNAs) can reduce glucose-stimulated insulin secretion

and increase beta-cell apoptosis, two causes of islet dys-

function and progression to type 2 diabetes. Studies have

shown that single nucleotide polymorphisms (SNPs) within

miRNA genes can affect their expression. We sought to

determine whether miRNAs, with a known role in beta-cell

function, possess SNPs within the pre-miRNA structure

which can affect their expression. Using published litera-

ture and dbSNP, we aimed to identify miRNAs with a role

in beta-cell function that also possess SNPs within the

region encoding its pre-miRNA. Following transfection of

plasmids, encoding the pre-miRNA and each allele of the

SNP, miRNA expression was measured. Two rare SNPs

located within the pre-miRNA structure of two miRNA

genes important to beta-cell function (miR-34a and miR-

96) were identified. Transfection of INS-1 and MIN6 cells

with plasmids encoding pre-miR-34a and the minor allele

of rs72631823 resulted in significantly (p \ 0.05) higher

miR-34a expression, compared to cells transfected with

plasmids encoding the corresponding major allele. Simi-

larly, higher levels were also observed upon transfection of

HeLa cells. Transfection of MIN6 cells with plasmids

encoding pre-miR-96 and each allele of rs41274239

resulted in no significant differences in miR-96 expression.

A rare SNP in pre-miR-34a is associated with increased

levels of mature miR-34a. Given that small changes in

miR-34a levels have been shown to cause increased levels

of beta-cell apoptosis this finding may be of interest to

studies looking at determining the effect of rare variants on

type 2 diabetes susceptibility.

Keywords miRNA � Single nucleotide polymorphism �
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Introduction

Recent genome-wide association studies (GWAS) have

identified common (minor allele frequency (MAF) [5 %)

single nucleotide polymorphisms (SNPs) associated with risk

of type 2 diabetes [1, 2]. Most of these SNPs seem to exert their

effect by affecting beta-cell function, rather than insulin action

[3]. However, despite some success, these findings only

explain*10 % of the heritability of type 2 diabetes [1]. It has

been widely postulated that rare genetic variation (MAF

\1 %) could explain some of the ‘‘missing heritability’’ [4, 5].

MicroRNAs (miRNAs) are single-stranded, non-protein

coding RNAs *21–23 nucleotides in length that regulate

gene expression by binding to mRNAs, via complementary

base pairing, resulting in mRNA decay and/or translational

repression. Recent studies are revealing important roles for

specific miRNAs in regulating beta-cell functions, partic-

ularly glucose-stimulated insulin secretion and apoptosis

(reviewed in [6]). In rodent models, during the progression

to diabetes, expression of specific miRNAs has been shown

to change, and manipulating the levels of these miRNAs by

silencing or mimicry experiments has revealed a causal

role in beta-cell dysfunction [7].

Given the need to tightly control the levels of specific

miRNAs for correct beta-cell function, we sought to deter-

mine whether SNPs present within the precursor-miRNA
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(pre-miRNA) structure might affect their expression. Pre-

vious studies have shown that sequence variation within a

pre-miRNA can affect levels of mature miRNA [8, 9]. The

density of SNPs within a pre-miRNA has been shown to

be lower than the SNP density in the flanking regions [10],

and as a result of this constraint SNPs that are present

would seem to have arisen fairly recently, meaning that the

MAF is low, population-specific and not captured well by

GWAS [11, 12]. Any significant associations found in this

study, between SNPs with a low MAF and miRNA

expression, may be of interest to future studies looking at

the effect of rare genetic variation on risk of developing

type 2 diabetes.

Materials and methods

Plasmids (pCMV–MIR series) encoding human pre-miR-

34a and pre-miR-96, and their flanking regions (at least

284 bp on either side), were purchased from Origene

(Rockville, MD, USA). Site-directed mutagenesis was

conducted using the QuikChange II XL Site-Directed

Mutagenesis Kit (Agilent Technologies, Santa Clara, CA,

USA). The correct sequence for each construct was con-

firmed by Sanger sequencing.

For all cell lines, transient transfections were performed

using Nucleofector technology (Lonza, Basel, Switzerland)

at a density of 1 9 106 cells/transfection. After incubating

for 16–24 h, cells were washed in PBS three times, and then

total RNA, including miRNA, extracted using the miR-

VANA miRNA isolation kit (Life Technologies, Carlsbad,

CA, USA).

For miRNA expression analysis, RNA was reverse tran-

scribed using the miRNA reverse transcription kit (Life

Technologies) and miRNA-specific RT primers. Subse-

quently, miRNA expression levels were determined using

miRNA-specific TaqMan assays on the ABI Prism 7900HT

real-time PCR platform (Life Technologies). The GeNorm

algorithm [13] in RealTime StatMiner software (Integro-

mics, Madrid, Spain) was used to identify the most stable

housekeeping genes and thus to normalise miRNA expres-

sion levels. The following sets of genes were selected as

housekeeping genes: U6, 4.5S and U87 (INS-1); U6, RNU44

and RNU6B (HeLa); U6, snoRNA412 and snoRNA234

(MIN6). For green fluorescent protein (GFP) expression

analysis, RNA was first DNase-treated using the Turbo

DNA-free kit (Life Technologies), before being reverse

transcribed using Superscript III reverse transcriptase (Life

Technologies) and random hexamer primers. All qPCR

reactions were run on the ABI Prism 7900HT real-time PCR

platform (Life Technologies). A custom TaqMan gene

expression assay to measure GFP mRNA was designed

(Life Technologies) and its ability to robustly determine

expression levels validated by standard curve. GFP mRNA

levels were normalised using the GeNorm algorithm [13] in

RealTime StatMiner software (Integromics, Madrid, Spain)

with the following sets of genes selected as housekeeping

genes: 18S, ACTB and GUSB (HeLa); Gusb, B2m and Actb

(INS-1); B2m, Hmbs and Polr2a (MIN6). Expression of

miR-96 and miR-34a was made relative to the expression of

the respective miRNA in cells transfected with the major

allele of each SNP. To normalise for differences in trans-

fection efficiency, miRNA expression was subsequently

normalised to the expression of GFP mRNA in that

respective sample. Statistical analysis was determined using

Student’s t-test with unequal variances assumed.

Results

In dbSNP version 135, we identified three SNPs within the

pre-miRNA sequence of miRNAs important to beta-cell

function (Table 1). All SNPs had to have been found in at

least one HapMap individual to be included. For a miRNA

to be included in our study, we required there to be evi-

dence in the literature for an effect of over-expression or

silencing of that miRNA on beta-cell apoptosis or glucose-

stimulated insulin secretion. Three SNPs were identified

(rs2910164, MAF = 0.38; rs72631823, MAF = 0.001;

rs41274239, MAF = 0.002), two of which are located

within the terminal loop region of the pre-miRNA and one

within the miR* seed sequence. We chose not to study the

effects of rs2910164 on miR-146a expression as this is a

common SNP, and the effect on miR-146a expression has

been previously extensively studied [14–16].

In MIN6 cells, transfection of plasmids encoding miR-

34a and the A (minor) allele of rs72631823 resulted in 2.1-

fold higher expression of miR-34a compared to cells

transfected with plasmids encoding miR-34a and the G

(major) allele of rs72631823 (p = 0.01) (Fig. 1). A

Table 1 miRNAs with a proven role in regulating glucose-stimulated

insulin secretion and/or beta-cell apoptosis

Pre-miRNA SNP? Location of SNP References

miR-375 No N/A [28]

miR-34a Yes—rs72631823 Terminal loop [20]

miR-146a Yes—rs2910164 miR* seed [7]

miR-21 No N/A [7]

miR-96 Yes—rs41274239 Terminal loop [29]

miR-410 No N/A [30]

miR-200a No N/A [30]

miR-130a No N/A [30]

miR-9 No N/A [31]

miR-124 No N/A [29]
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similarly increased level of miR-34a expression from

plasmids bearing the minor (A) allele of rs72631823 was

seen in INS-1 cells (3.8-fold, p = 0.02) and HeLa cells

(2.5-fold, p = 0.08) (Fig. 1). Using the Mfold algorithm

[17] and web server (http://mfold.rna.albany.edu/), RNA

secondary structure predictions support these findings. The

terminal loop of the pre-miRNA bearing the A allele of

rs72631823 is in a more relaxed, open form than the G

allele (Fig. 2). This has been shown to be associated

with more efficient Drosha and Dicer processing and

consequently higher levels of mature miRNA [18]. In

MIN6 cells, transfection of plasmids encoding miR-96 and

each allele of rs41274239 resulted in no significant dif-

ferences in miR-96 expression (data not shown). This was

despite a *eightfold increase in miR-96 expression being

measured in cells transfected with plasmids encoding miR-

96, and the T (major) allele of rs41274239 compared to

cells transfected with empty vector. This finding is con-

sistent with a previous study that did not identify any

significant differences in miR-96 expression upon trans-

fection of HeLa cells with miR-96 expression plasmids

encoding each allele of rs41274239 [19].

Discussion

Two studies have shown that precise control of miR-34a

expression in the beta cell is needed to maintain correct

beta-cell function. Experiments demonstrated that palmi-

tate and proinflammatory cytokine-induced beta-cell

apoptosis result in a threefold to fourfold increase in miR-

34a expression and that specifically inhibiting miR-34a

activity significantly reduces the stimulus-induced apop-

tosis [7, 20]. One may conclude from these experiments

that miR-34a plays a causal role in beta-cell apoptosis and

that small (within one order of magnitude) changes in

expression, such as those observed in this study and

attributable to allelic effects of rs72631823, may have

significant consequences.

Our finding of increased miR-34a expression in all three

cell lines transfected with the minor versus major allele of

rs72631823 suggests that this may not be a tissue-specific

phenomenon. Indeed, small deviations in miR-34a
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Fig. 1 miRNA expression in cells transfected with plasmids encod-

ing pre-miR-34a and each allele of rs72631823. For each cell line,

expression is relative to cells transfected with the pre-miRNA

encoding the major allele of rs72631823. Data are presented as

mean ± SEM and the results of three independent transfections.

Statistical analysis performed using Student’s t-test with unequal

variances assumed. *p \ 0.05

rs72631823 major (G) allele 

rs72631823 minor (A) allele 

Fig. 2 Secondary structure of pre-miR-34a for each allele of rs72631823, as predicted by Mfold
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expression may have functional consequences in other

tissues that play a role in diabetes pathogenesis. Numerous

studies have found elevated miR-34a expression in fatty

livers of dietary-induced and genetic mouse models of

obesity [21–23]. Furthermore, higher miR-34a levels are

seen in livers of human individuals with nonalcoholic fatty

liver disease [21, 24]. A causal role for miR-34a in meta-

bolic dysregulation within the liver, through regulation of

the hepatic response to FGF19, has also been reported [25].

This suggests that increased hepatic miR-34a expression,

which may be found in carriers of the rare allele of

rs72631823, could promote a more insulin-resistant state

and compound the deleterious effects on islet function of

higher miR-34a expression. Additionally, the seeming lack

of tissue specificity for the effect of rs72631823 on miR-

34a expression suggests that results from any future

expression quantitative trait loci (eQTL) analysis in an

accessible tissue may be justifiably, and with some confi-

dence, extrapolated to more disease relevant, but inacces-

sible, tissues. The very low MAF and identification

exclusively in the Yoruba in Ibadan (YRI) population make

eQTL studies for rs72631823, however, a very difficult

avenue to pursue.

Given recent studies reporting an association of common

genetic variation within pre-miRNAs with type 2 diabetes

susceptibility [26] and an enrichment of T2D GWAS signals

in genes predicted to be targeted by islet-expressed miRNAs

[27], the importance of miRNAs to maintenance of beta-cell

function cannot be overstated. Indeed, the results of this

study may justify analysing a far larger number of SNPs

within miRNA genes (perhaps limited to those expressed in

the pancreatic islet) and assessing their effects on miRNA

expression. Whilst their rarity impedes the finding of sig-

nificant associations in single-marker tests, methods such as

the one presented here can be used to functionally annotate

variants for grouping in collapsed/multiple marker tests,

which are more likely to uncover significant associations

with complex traits, such as type 2 diabetes.
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