545 research outputs found

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported

    Measurement of CPCP violation in B0Dπ±B^{0}\rightarrow D^{\mp}\pi^{\pm} decays

    Get PDF
    A measurement of the CPCP asymmetries SfS_{f} and SfˉS_{\bar{f}} in B0Dπ±B^0\to D^{\mp}\pi^{\pm} decays is reported. The decays are reconstructed in a dataset collected with the LHCb experiment in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV and corresponding to an integrated luminosity of 3.0fb13.0 \rm{ fb}^{-1}. The CPCP asymmetries are measured to be Sf=0.058±0.020(stat)±0.011(syst)S_{f} = 0.058 \pm 0.020 (\rm{stat}) \pm 0.011(\rm{syst}) and Sfˉ=0.038±0.020(stat)±0.007(syst)S_{\bar{f}} = 0.038\pm 0.020 (\text{stat})\pm 0.007 (\text{syst}). These results are in agreement with, and more precise than, previous determinations. They are used to constrain sin(2β+γ)|\sin\left(2\beta+\gamma\right)| and γ\gamma to intervals that are consistent with the current world-average values.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2018-009.htm

    Measurement of the branching fraction and CP asymmetry in B plus . J/.. plus decays

    Get PDF
    The branching fraction and direct C ⁣PC\!P asymmetry of the decay B+J/ψρ+B^{+}\rightarrow J/\psi \rho^{+} are measured using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7 and 8 TeV, corresponding to a total integrated luminosity of 3\mbox{fb}^{-1}. The following results are obtained: \begin{align} \mathcal{B}(B^{+}\rightarrow J/\psi \rho^{+}) &= (3.81 ^{+0.25}_{-0.24} \pm 0.35) \times 10^{-5}, \nonumber \\ \mathcal{A}^{C\!P} (B^{+}\rightarrow J/\psi \rho^{+}) &= -0.045^{+0.056}_{-0.057} \pm 0.008, \nonumber \end{align} where the first uncertainties are statistical and the second systematic. Both measurements are the most precise to date.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-036.htm

    Evidence for the decay BS0K0μ+μ {B}_S^0\to {\overline{K}}^{\ast 0}{\mu}^{+}{\mu}^{-}

    Get PDF
    International audienceA search for the decay BS0K0μ+μ {B}_S^0\to {\overline{K}}^{\ast 0}{\mu}^{+}{\mu}^{-} is presented using data sets corresponding to 1.0, 2.0 and 1.6 fb1^{−1} of integrated luminosity collected during pp collisions with the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, respectively. An excess is found over the background-only hypothesis with a significance of 3.4 standard deviations. The branching fraction of the BS0K0μ+μ {B}_S^0\to {\overline{K}}^{\ast 0}{\mu}^{+}{\mu}^{-} decay is determined to be B(Bs0K0μ+μ)=[2.9±1.0(stat)±0.2(syst)±0.3(norm)]×108 \mathrm{\mathcal{B}}\left({B}_s^0\to {\overline{K}}^{\ast 0}{\mu}^{+}{\mu}^{-}\right)=\left[2.9\pm 1.0\left(\mathrm{stat}\right)\pm 0.2\left(\mathrm{syst}\right)\pm 0.3\left(\mathrm{norm}\right)\right]\times {10}^{-8} , where the first and second uncertainties are statistical and systematic, respectively. The third uncertainty is due to limited knowledge of external parameters used to normalise the branching fraction measurement

    Measurement of forward top pair production in the dilepton channel in <i>pp</i> collisions at √s=13 TeV

    Get PDF
    Forward top quark pair production is studied in pppp collisions in the μeb\mu eb final state using a data sample corresponding to an integrated luminosity of 1.93 fb1^{-1} collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The cross-section is measured in a fiducial region where both leptons have a transverse momentum greater than 20 GeV and a pseudorapidity between 2.0 and 4.5. The quadrature sum of the azimuthal separation and the difference in pseudorapidities, denoted ΔR\Delta R, between the two leptons must be larger than 0.1. The bb-jet axis is required to be separated from both leptons by a ΔR\Delta R of 0.5, and to have a transverse momentum in excess of 20 GeV and a pseudorapidity between 2.2 and 4.2. The cross-section is measured to be σttˉ=126±19(stat)±16(syst)±5(lumi)fb\sigma_{t\bar{t}}= 126\pm19\,(\mathrm{stat})\pm16\,(\mathrm{syst})\pm5\,(\mathrm{lumi})\,\,\mathrm{ fb} where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measurement is compatible with the Standard Model prediction.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2017-050.htm

    Search for CPCP violation through an amplitude analysis of D0K+Kπ+πD^0 \to K^+ K^- \pi^+ \pi^- decays

    Get PDF
    International audienceA search for CP violation in the Cabibbo-suppressed D0^{0} → K+^{+}K^{−}π+^{+}π^{−} decay mode is performed using an amplitude analysis. The measurement uses a sample of pp collisions recorded by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity of 3.0 fb1^{−1}. The D0^{0} mesons are reconstructed from semileptonic b-hadron decays into D0^{0}μ^{−}X final states. The selected sample contains more than 160 000 signal decays, allowing the most precise amplitude modelling of this D0^{0} decay to date. The obtained amplitude model is used to perform the search for CP violation. The result is compatible with CP symmetry, with a sensitivity ranging from 1% to 15% depending on the amplitude considered

    Observation of the Λb0 → χc1 (3872) pK− decay

    Get PDF
    No abstract available

    Measurement of CP -violating and mixing-induced observables in Bs0→ϕγ decays

    Get PDF
    A time-dependent analysis of the B 0 s → ϕ γ decay rate is performed to determine the C P -violating observables S ϕ γ and C ϕ γ and the mixing-induced observable A Δ ϕ γ . The measurement is based on a sample of p p collision data recorded with the LHCb detector, corresponding to an integrated luminosity of 3     fb − 1 at center-of-mass energies of 7 and 8 TeV. The measured values are S ϕ γ = 0.43 ± 0.30 ± 0.11 , C ϕ γ = 0.11 ± 0.29 ± 0.11 , and A Δ ϕ γ = − 0.67 + 0.37 − 0.41 ± 0.17 , where the first uncertainty is statistical and the second systematic. This is the first measurement of the observables S and C in radiative B 0 s decays. The results are consistent with the standard model predictions
    corecore