15 research outputs found

    An Overview of the 2014 ALMA Long Baseline Campaign

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the Astrophysical Journal Letters; this version with small changes to affiliation

    Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

    Get PDF
    IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutiùres syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate

    In vitro and in vivo reduced fitness and virulence in ciprofloxacin-resistant Acinetobacter baumannii

    Get PDF
    Limited data on relative fitness and virulence of antimicrobial-resistant Acinetobacter baumannii are known. We aimed to study the virulence and fitness cost of ciprofloxacin-resistance in A. baumannii (CipR) compared with the susceptible parental wild-type strain (CipS). Human lung epithelial cells were infected with CipS and CipR for 24h. Competition fitness was monitored in vitro and in vivo in a murine peritoneal sepsis model. We showed that CipR induced less cell death than CipS and CipR growth was slow when in competition with CipS. Altogether, acquisition of ciprofloxacin resistance confers a biological fitness cost and reduces virulence in A. baumannii. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.Financial support: Dr Y. Smani is funded by the Ministerio de Ciencia e InnovaciĂłn, Instituto de Salud Carlos III – co-financed by the European Development Regional Fund ‘A way to achieve Europe’ ERDF, Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008). We thank Tarik Smani and Antonio Ordoñez for the use of their immunofluorescence microscope.Peer Reviewe

    Uric Acid Treatment After Stroke Prevents Long-Term Middle Cerebral Artery Remodelling and Attenuates Brain Damage in Spontaneously Hypertensive Rats

    No full text
    Hypertension is the most important modifiable risk factor for stroke and is associated with poorer post-stroke outcomes. The antioxidant uric acid is protective in experimental normotensive ischaemic stroke. However, it is unknown whether this treatment exerts long-term protection in hypertension. We aimed to evaluate the impact of transient intraluminal middle cerebral artery (MCA) occlusion (90 min)/reperfusion (1–15 days) on brain and vascular damage progression in adult male Wistar-Kyoto (WKY; n = 36) and spontaneously hypertensive (SHR; n = 37) rats treated (i.v./120 min post-occlusion) with uric acid (16 mg kg−1) or vehicle (Locke’s buffer). Ischaemic brain damage was assessed longitudinally with magnetic resonance imaging and properties of MCA from both hemispheres were studied 15 days after stroke. Brain lesions in WKY rats were associated with a transitory increase in circulating IL-18 and cerebrovascular oxidative stress that did not culminate in long-term MCA alterations. In SHR rats, more severe brain damage and poorer neurofunctional outcomes were coupled to higher cortical cerebral blood flow at the onset of reperfusion, a transient increase in oxidative stress and long-lasting stroke-induced MCA hypertrophic remodelling. Thus, stroke promotes larger brain and vascular damage in hypertensive rats that persists for long-time. Uric acid administered during early reperfusion attenuated short- and long-term brain injuries in both normotensive and hypertensive rats, an effect that was associated with abolishment of the acute oxidative stress response and prevention of stroke-induced long-lasting MCA remodelling in hypertension. These results suggest that uric acid might be an effective strategy to improve stroke outcomes in hypertensive subjects.This study was supported by Ministerio de Ciencia e Innovación [SAF2014-56111-R] to E.V., B.P. and F.J-A.; Generalitat de Catalunya [2017-SGR-645] to AM.P., A.C., E.V. and F.J-A.; and Instituto Carlos III [FIS PI13/0091, RIC RD12/0042/0006] to AP.D. Instituto de Salud Carlos III (Spain) co-funded by EU FEDER funds Redes Temáticas de Investigación Cooperativa Sanitaria RETICS-INVICTUS-RD16/019 to J.M-F./E.J-X and to A.C./AM.P.Peer reviewe

    Polymeric Composite Dressings Containing Calcium-Releasing Nanoparticles Accelerate Wound Healing in Diabetic Mice

    No full text
    [Objective] Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. [Approach] To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. [Results] This dressing exhibits a controlled ion release and a good in vitro bioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. [Innovation] The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. [Conclusion] Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER) through the projects MAT2012-38793 and MAT2015-68906-R, the EuroNanoMed3 project nAngioDerm funded through the Spanish Ministry of Science and Innovation (ref. PCI2019-103648), the Spanish Ministry of Education, Culture, and Sports with the FPU grant (ref. AP-2012-5310), EIT Health (project EIT PoC-2016-SPAIN-03), La Caixa Banking Foundation through their CaixaImpulse Program and Caixaimpulse 2.0 Consolidate Program (Ref. LCF/TR/CN18/52210003)

    Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling

    No full text
    Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method-integrative modeling of genomic regions (IMGR)-to increase the genomic resolution of our traces to 10 kb.This work was supported by funds from Ministerio de Ciencia, InnovaciĂłn y Universidades of Spain (http://www.ciencia.gob.es/) (IJCI-2015-23352) to IF, Damon Runyon Cancer Research Foundation (https://www.damonrunyon.org/) and Howard Hughes Medical Institute (https://www.hhmi.org/) to BJB, Uehara Memorial Foundation Research (https://www.taisho-holdings.co.jp/en/environment/social/sciences/) to HMS, William Randolph Hearst Foundation (https://www.hearstfdn.org/) to RBM, EMBO (Long-Term fellowship) (https://www.embo.org/) to JE, NSF (Center for Theoretical Biological Physics, Rice University) (https://www.nsf.gov/) to MDP and JNO, NSF (CCF-1054898, CCF-1317291) (https://www.nsf.gov/), NIH (1R01EB018659-01, 1-U01- MH106011-01) (https://www.nih.gov/), and Office of Naval Research (N00014-13-1-0593, N00014-14-1-0610, N00014-16-1-2182, N00014-16-1- 2410) (https://www.onr.navy.mil/) to PY, NIH (1DP2OD008540, U01HL130010, UM1HG009375, 4DP2OD008540) (https://www.nih.gov/), NSF (PHY-1427654) (https://www.nsf.gov/), USDA (2017-05741) (https://www.usda.gov/), Welch Foundation (Q-1866) (http://www.welch1.org/), NVIDIA (https://www.nvidia.com/en-us/), IBM (https://www.ibm.com/us-en/?lnk=m), Google (https://www.google.com/), Cancer Prevention Research Institute of Texas (R1304) (http://www.cprit.state.tx.us/), and McNair Medical Institute (http://www.mcnairfoundation.org/what-we-fund/mcnair-medical-institute/) to E.L.A., Horizon 2020 Research and Innovation Programme (676556) (https://ec.europa.eu/programmes/horizon2020/en/), European Research Council (609989) (https://erc.europa.eu/), Ministerio de Ciencia, InnovaciĂłn y Universidades of Spain (BFU2017-85926-P) (http://www.ciencia.gob.es/), CERCA, and AGAUR Programme of the Generalitat de Catalunya and Centros de Excelencia Severo Ochoa (SEV-2012-0208) (http://www.ciencia.gob.es/portal/site/MICINN/menuitem.7eeac5cd345b4f34f09dfd1001432ea0/?vgnextoid=cba733a6368c2310VgnVCM1000001d04140aRCRD) to M.A.M-R., and NIH (5DP1GM106412, R01HD091797, R01GM123289) (https://www.nih.gov/) to C-tW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Characteristics and laboratory findings on admission to the emergency department among 2873 hospitalized patients with COVID-19: the impact of adjusted laboratory tests in multicenter studies. A multicenter study in Spain (BIOCOVID-Spain study).

    No full text
    Identification of predictors for severe disease progression is key for risk stratification in COVID-19 patients. We aimed to describe the main characteristics and identify the early predictors for severe outcomes among hospitalized patients with COVID-19 in Spain. This was an observational, retrospective cohort study (BIOCOVID-Spain study) including COVID-19 patients admitted to 32 Spanish hospitals. Demographics, comorbidities and laboratory tests were collected. Outcome was in-hospital mortality. For analysis, laboratory tests values were previously adjusted to assure the comparability of results among participants. Cox regression was performed to identify predictors. Study population included 2873 hospitalized COVID-19 patients. Nine variables were independent predictors for in-hospital mortality, including creatinine (Hazard ratio [HR]:1.327; 95% Confidence Interval [CI]: 1.040-1.695, p = .023), troponin (HR: 2.150; 95% CI: 1.155-4.001; p = .016), platelet count (HR: 0.994; 95% CI: 0.989-0.998; p = .004) and C-reactive protein (HR: 1.037; 95% CI: 1.006-1.068; p = .019). This is the first multicenter study in which an effort was carried out to adjust the results of laboratory tests measured with different methodologies to guarantee their comparability. We reported a comprehensive information about characteristics in a large cohort of hospitalized COVID-19 patients, focusing on the analytical features. Our findings may help to identify patients early at a higher risk for an adverse outcome

    Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

    No full text
    IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-GoutiĂšres syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate
    corecore