-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Genetic and phenotypic spectrum associated with IFIH1 gain-of-
function

Citation for published version:

Rice, Gl, Park, S, Gavazzi, F, Adang, LA, Ayuk, LA, Van Eyck, L, Seabra, L, Barrea, C, Battini, R, Belot, A,
Berg, S, Billette de Villemeur, T, Bley, AE, Blumkin, L, Boespflug-Tanguy, O, Briggs, TA, Brimble, E, Dale,
RC, Darin, N, Debray, F-G, De Giorgis, V, Denecke, J, Doummar, D, Drake Af Hagelsrum, G, Eleftheriou, D,
Estienne, M, Fazzi, E, Feillet, F, Galli, J, Hartog, N, Harvengt, J, Heron, B, Heron, D, Kelly, DA, Lev, D,
Levrat, V, Livingston, JH, Marti, I, Mignot, C, Mochel, F, Nougues, M-C, Oppermann, |, Pérez-Duefas, B,
Popp, B, Rodero, MP, Rodriguez, D, Saletti, V, Sharpe, C, Tonduti, D, Vadlamani, G, Van Haren, K, Tomas
Vila, M, Vogt, J, Wassmer, E, Wiedemann, A, Wilson, CJ, Zerem, A, Zweier, C, Zuberi, SM, Orcesi, S,
Vanderver, AL, Hur, S & Crow, YJ 2020, 'Genetic and phenotypic spectrum associated with IFIH1 gain-of-
function', Human Mutation. https://doi.org/10.1002/humu.23975

Digital Object Identifier (DOI):
10.1002/humu.23975

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Human Mutation

Publisher Rights Statement:
Attribution 4.0 International (CC BY 4.0)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 11. May. 2020


https://core.ac.uk/display/322484056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/humu.23975
https://doi.org/10.1002/humu.23975
https://www.research.ed.ac.uk/portal/en/publications/genetic-and-phenotypic-spectrum-associated-with-ifih1-gainoffunction(59f6583c-761e-459e-806a-163a19360536).html

Received: 15 October 2019 Revised: 11 December 2019 Accepted: 30 December 2019
DOI: 10.1002/humu.23975

HGVS

RESEARCH ARTICLE saensaer WILEY

Genetic and phenotypic spectrum associated with IFIH1
gain-of-function

Gillian 1. Rice!® | Sehoon Park®® | Francesco Gavazzi* | Laura A. Adang* |
Loveline A. Ayuk® | Lien Van Eyck® | Luis Seabra® | Christophe Barrea’ |

Roberta Battini®® | Alexandre Belot'®'! | Stefan Berg?? | Thierry Billette de Villemeur®® |
Annette E. Bley'* | Lubov Blumkin'>'¢ | Odile Boespflug-Tanguy”*® | Tracy A. Briggs®®® |
Elise Brimble®® | Russell C. Dale?* | Niklas Darin?*?® | Francois-Guillaume Debray?* |
Valentina De Giorgis®®> | Jonas Denecke!* | Diane Doummar?® | Gunilla Drake af
Hagelsrum?’ | Despina Eleftheriou?® | Margherita Estienne® | Elisa Fazzi®®*®' | Francois
Feillet®® | Jessica Galli*®3? | Nicholas Hartog® | Julie Harvengt®* | Bénédicte Heron®® |
Delphine Heron*® | Diedre A. Kelly*” | Dorit Lev4®® | Virginie Levrat®® |

John H. Livingston® | Itxaso Marti** | Cyril Mignot*? | Fanny Mochel®® |

4 | llena Oppermann®* | Belén Pérez-Duefas®® | Bernt Popp™* |
Mathieu P. Rodero® | Diana Rodriguez*’*® 50|
Davide Tonduti®® | Gayatri Vadlamani*® | Keith Van Haren®® | Miguel Tomas Vila®? |

Julie Vogt®® | Evangeline Wassmer®® | Arnaud Wiedemann®? | Callum J. Wilson®® |
15,16 2558 |

Marie-Christine Nougues
| Veronica Saletti** | Cia Sharpe

Ayelet Zerem | Christiane Zweier* | Sameer M. Zuberi*®>’ | Simona Orcesi

Adeline L. Vanderver® | Sun Hur?® | Yanick J. Crow®>%%°

Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre,
University of Manchester, Manchester, United Kingdom

2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
3Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts

“Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

5Paediatric Department, Dumfries and Galloway Royal Infirmary, Cargenbridge, United Kingdom

6Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris, France

7Department of Neuropaediatrics, CHU & University of Liége, Liege, Belgium

8Department Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

?IRCCS Fondazione Stella Maris, Pisa, Italy

1Oyniversité de Lyon, INSERM U1111, CIRI, Lyon, France

1Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de
Lyon, Lyon, France

Gillian 1. Rice and Sehoon Park equally contributed to this study.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2020 The Authors. Human Mutation published by Wiley Periodicals, Inc.

Human Mutation. 2020;1-13. wileyonlinelibrary.com/journal/humu 1


http://orcid.org/0000-0002-4223-0571
http://orcid.org/0000-0001-8002-2020

RICE ET AL

2 | wiLEY-

12pediatric Immunology and Rheumatology, The Queen Silvia Children’s Hospital, Goteborg, Sweden

13Neuropédiatrie, Centre de référence Neurogénétique, Hopital Trousseau, Sorbonne Université, Paris, France

University Children’s Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany

Spediatric Neurology Unit, Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel

16Gackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel

17Génétique Médicale, Université Paris Diderot, Paris, France

185ervice de Neuropédiatrie et des Maladies Métaboliques, Centre de Référence Maladies Rares “Leucodystrophies”, Hopital Robert Debré, Paris, France
1“Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom

29Department of Neurology, Stanford University School of Medicine, Stanford, California

21Faculty of Medicine and Health, Kids Neuroscience Centre, Brain and Mind Centre, Children’s Hospital at Westmead, University of Sydney, Sydney, Australia
22Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden

23The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden

24Metabolic Unit, Department of Medical Genetics, CHU & University of Liége, Gembloux, Belgium

25Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy

26GHUEP, département de neuropédiatrie, Centre de référence neurogénétique mouvement anormaux de I'enfant, Hopital Armand Trousseau, Paris, France
27pediatric Neurology, The Queen Silvia Children’s Hospital, Goteborg, Sweden

28paediatric Rheumatology, ARUK Centre for Adolescent Rheumatology, Institute of Child Health, University College London (UCL) Great Ormond Street Hospital,
London, United Kingdom

29U.0. Neuropsichiatria Infantile, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy

30Unit of Child Neurology and Psichiatry, ASST Spedali Civili of Brescia, Brescia, Italy

31Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy

32Service de Médecine Infantile, Centre de Référence des maladies métaboliques de Nancy, CHU Brabois Enfants, Unité INSERM NGERE U1256, Nancy, France
33Department of Allergy/Immunology, Spectrum Health Helen Devos Children’s Hospital, Michigan State University College of Human Medicine, East Lansing, Michigan
34Department of Medical Genetics, CHU & University of Liége, Gembloux, Belgium

35Service de Neuropédiatrie, Centre Référence des Maladies Lysosomales, Hopital Trousseau, Paris, France

S6UF Génétique Médicale et Centre de Référence “Déficiences Intellectuelles”, Groupe Hospitalier Pitié-Salpétriére, Paris, France

37The Liver Unit, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, United Kingdom

38Metabolic Neurogenetic Service, Wolfson Medical Center, The Rina Mor Institute of Medical Genetics, Holon, Israel

39Service de pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France

“ODepartment of Paediatric Neurology, Leeds General Infirmary, Leeds, United Kingdom

“pediatric Neurology, Hospital Universitario Donostia, Universidad del Pais Vasco UPV-EHU, San Sebastian, Spain

“2Departement de Génétique & Centre de Référence Déficience Intellectuelle de cause rare, GH Pitié-Sapétriére, Paris, France

“nstitut du Cerveau et de la Moelle épiniére, INSERM U 1127, Sorbonne Universités, Paris, France

4Service de Neuropédiatrie, GHUEP, Hépital Armand Trousseau, APHP, Paris, France

“Spediatric Neurology Research Group, Hospital Vall d'Hebron—Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
%|nstitute of Human Genetics, Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU), Erlangen, Germany

4’GRC n°19, pathologies Congénitales du Cervelet-LeucoDystrophies, CRMR maladies neurogénétiques, Sorbonne Université, Paris, France
“8Service de Neuropédiatrie, Hopital Trousseau, Groupe Hospitalier HUEP, Inserm U1141, Paris, France

“?Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

Opaediatric Neurology, Starship Children’s Hospital, Auckland, New Zealand

>'pediatric Neurology Unit, V. Buzzi Children’s Hospital, Milan, Italy

52Neuropediatria, Hospital Universitari i Politecnic La Fe, Valencia, Spain

53West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust,
Birmingham, United Kingdom

54Department of Paediatric Neurology, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, United Kingdom
55National Metabolic Service, Starship Children’s Hospital, Auckland, New Zealand

56paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, United Kingdom

57School of Medicine, University of Glasgow, Glasgow, United Kingdom

58Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy

59Sorbonne-Paris-Cité, Institut Imagine, Paris Descartes University, Paris, France

$Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh,
United Kingdom



RICE ET AL

Correspondence

Sun Hur, Department of Biological Chemistry
and Molecular Pharmacology, Harvard
Medical School and Program in Cellular and
Molecular Medicine, Boston Children’s
Hospital, MA 02115.

Email: Sun.Hur@childrens.harvard.edu

Yanick J. Crow, Centre for Genomic and
Experimental Medicine, MRC Institute of
Genetics and Molecular Medicine, University
of Edinburgh, Edinburgh EH4 2XU, United
Kingdom.

Email: yanickcrow@mac.com

Funding information

Public Health Research Programme,
Grant/Award Number: TRF-2016-09-002;
National Center for Advancing Translational
Sciences of the National Institutes of Health,
Grant/Award Number: KL2TR001879; CURE
Pennsylvania Frontiers in Leukodystrophy,
Grant/Award Number: U01HD082806;
H2020 European Research Council,
Grant/Award Number: 786142-E-T1IFNs;
Agence Nationale de la Recherche,

CWILEY-2

Abstract

IFIH1 gain-of-function has been reported as a cause of a type | interferonopathy
encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutieres
syndrome and Singleton Merten syndrome. Ascertaining patients through a European
and North American collaboration, we set out to describe the molecular, clinical and
interferon status of a cohort of individuals with pathogenic heterozygous mutations in
IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely
pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were
clinically asymptomatic (with seven of these aged over 50 years). All mutations were
associated with enhanced type | interferon signaling, including six variants (22%) which
were predicted as benign according to multiple in silico pathogenicity programs. The
identified mutations cluster close to the ATP binding region of the protein. These data
confirm variable expression and nonpenetrance as important characteristics of the IFIH1
genotype, a consistent association with enhanced type | interferon signaling, and a
common mutational mechanism involving increased RNA binding affinity or decreased
efficiency of ATP hydrolysis and filament disassembly rate.

KEYWORDS

Grant/Award Number: ANR-10-IAHU-01;
MSDAvenir fund, Grant/Award Number:
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1 | INTRODUCTION

In 2014, heterozygous gain-of-function mutations in IFIH1 were reported
to cause a spectrum of neuroimmune phenotypes including classical
Aicardi-Goutiéres syndrome (AGS; Oda et al., 2014; Rice et al., 2014).
IFIH1 encodes interferon-induced helicase C domain-containing protein 1
(IFHI1; also known as melanoma differentiation associated gene 5
protein: MDA5) which senses viral double-stranded (ds) RNA in the
cytosol, leading to the induction of a type | interferon-mediated antiviral
response. Consequent to Mendelian determined gain-of-function, it is
suggested that IFIH1 inappropriately senses self-derived nucleic acid as
viral, leading to an autoinflammatory state classified as a type |
interferonopathy (Ahmad et al., 2018; Crow & Manel, 2015). In 2015, a
p.Arg822GiIn substitution in IFIH1 was shown to cause Singleton Merten
syndrome (SMS), an autosomal dominant trait variably characterized by a
deforming arthropathy, abnormal tooth development and cardiac valve
calcification, again in association with enhanced type | interferon signaling
(Rutsch et al., 2015). Although it was initially considered that SMS was a
distinct, mutation-specific disorder, subsequent reports indicate that SMS
and the neuroinflammatory phenotypes seen in the context of IFIH1
gain-of-function constitute part of the same disease spectrum (Buers,
Rice, Crow, & Rutsch, 2017; Bursztejn et al,, 2015).

Type | interferonopathy associated IFIH1 mutations are either absent
from control databases, or only present at very low frequency. However,
we have noted previously that in silico algorithms are not always reliable
in differentiating IFIH1 disease-causing variants from benign polymorph-

isms (Ruaud et al, 2018). Such difficulty in assigning molecular

Type | interferonopathy

Aicardi-Goutiéres syndrome, IFIH1, MDAD5, Singleton Merten syndrome,

pathogenicity is compounded by marked variability in disease expression,
sometimes even within the same family, and the observation of complete
non-penetrance in certain pedigrees (Rice et al, 2014). Given this
background, we considered it important to provide an update of our
experience of sequencing individuals for pathogenic IFIH1 mutations
associated with a type | interferonopathy state. In total, we describe
molecular and clinical data relating to 74 individuals from 51 families,
identifying 27 likely pathogenic mutations that cluster close to the ATP
binding region of the protein. Our data confirm variable expression and
nonpenetrance as important characteristics of these mutant genotypes,
and the consistent association with enhanced type | interferon signaling
as assessed by interferon-stimulated gene (ISG) expression, referred to as
the interferon score.

2 | MATERIALS AND METHODS

2.1 | Subjects

Patients were ascertained through direct contact and/or collaborating
physicians across clinical research laboratories in the UK and France
(Crow), the USA (Vanderver), and Italy (Orcesi). The study was approved
by the Leeds (East) Research Ethics Committee (10/H1307/132), the
Comité de Protection des Personnes (ID-RCB/EUDRACT: 2014-A01017-
40), IRB study protocol (Myelin Disorders Bioregistry Project: IRB# 14-
011236) and the local ethics committee of the IRCCS Mondino
Foundation, Pavia, Italy (3549/2009 of 30/9/2009 and 11/12/2009;
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n.20170035275 of 23/10/2017). Amino acid substitutions were con-
sidered as pathogenic mutations when they were seen in the context of a
neuroimmune/autoinflammatory state (including AGS, a spastic-dystonic
syndrome, nonsyndromic spastic paraparesis or SMS), and when two or
more of the following applied: observation of the same variant in an
unrelated family; de novo occurrence; documented increase in ISG
expression; in vitro data consistent with IFIH1 gain-of-function.

2.2 | Mutational analysis

Mutations were identified on a variety of next-generation sequencing
platforms. Where Sanger sequencing was undertaken, primers were
designed to amplify the coding exons of IFH1, with mutation annotation
based on the reference cDNA sequence NM_022168.2. Variants were
assessed using the in silico programs SIFT (http://sift.jcvi.org), Polyphen2
(http://genetics.owh.harvard.edu/pph2/), and CADD (https://cadd.gs.
washington.edu), summarized in VarCards (http://varcards.biols.ac.cn/).
Population allele frequencies were obtained from the gnomAD database

(http://gnomad.broadinstitute.org).

2.3 | Protein modeling
Molecular graphics figures were generated with PyMOL (Schrodin-
ger) using the PDB coordinates (4GL2).

2.4 | Interferon score

Interferon scores were calculated on the basis of the expression of ISGs
according to previously published protocols. In brief, this involved either a
quantitative reverse transcription-polymerase chain reaction (qPCR)
analysis using TagMan probes (Crow laboratory: Rice et al., 2013), or
testing on a Nanostring platform (Vanderver laboratory: Adang et al.,
2018+). In the former, the relative abundance of IFI27 (Hs01086370_m1),
IFI44L (Hs00199115_m1), IFIT1 (Hs00356631_g1), I1SG15 (Hs00192
713_.m1), RSAD2 (Hs01057264_m1), and SIGLEC1 (Hs00988063_m1)
transcripts was normalized to the expression levels of HPRT1
(Hs03929096_g1) and 18S (Hs999999001_s1). The median fold change
of the six genes, compared to the median of 29 previously collected
healthy controls, was then used to create an interferon score for each
individual, with an abnormal interferon score being defined as greater
than +2 standard deviations above the mean of the control group that is
2466. Alternatively, the copy number of mRNA transcripts of
the six ISGs listed above, and four housekeeping genes (ALAS1, HPRT1,
TBP, and TUBB), was quantified using a Nanostring nCounter™ Digital
Analyzer. The raw copy number of mRNA transcripts of each ISG was
standardized using the geometric mean of the four housekeeping
genes for each individual, and the six-gene interferon signature
for each individual calculated using the median of the Z scores,
with the result considered positive if 21.96 (>98th centile; one

tail analysis).

2.5 | Interferon reporter assay

The pFLAG-CMV4 plasmid encoding IFIH1 has been described
elsewhere (Rice et al., 2014). Indicated mutations were introduced
using Phusion HiFi DNA polymerase. HEK 293T cells (ATCC) were
maintained in 48-well plates in DMEM (Cellgro) supplemented with
10% fetal bovine serum and 1% L-glutamine. At 80% confluence, cells
were cotransfected with pFLAGCMV4 plasmids encoding wild-type or
mutant IFIH1 (5ng, unless indicated otherwise), interferon B (IFNb)
promoter-driven firefly luciferase reporter plasmid (100 ng), and a
constitutively expressed Renilla luciferase reporter plasmid (pRL-TK,
10 ng), by using Lipofectamine 2000 (Life Technologies) according to
the manufacturer’s protocol. The medium was changed 6 hr after
transfection, and cells were subsequently incubated for 18 hr with or
without stimulation with poly(I-C) (500 ng; InvivoGen) using Lipofec-
tamine 2000. Cells were lysed with Passive Lysis Buffer (Promega),
and IFNb promoter activity was measured using a Dual-Luciferase
Reporter Assay (Promega) and a Synergy 2 plate reader (BioTek).
Firefly luciferase activity was normalized to Renilla luciferase activity
Each experiment was performed in triplicate and data are presented as
mean * standard mean of error. Statistical significance was determined
by two-tailed, unpaired Student’s t-test with *, **, and *** indicating p
values <.05, <.01, and <.001, respectively. Expression levels of

individual constructs were tested by western blot analysis.

3 | RESULTS

3.1 | Molecular data

We collected data on 74 individuals from 51 families, identifying 27
distinct mutations in total (Figure 1; Table 1). Fourteen mutations were
recorded in a single proband, seven in more than one individual belonging
to a single-family, and six in more than one family. Of these six recurrent
mutations, the p.Arg720GIn, p.Arg779Cys, and p.Arg779His substitutions
were observed most frequently (6, 8, and 10 times, respectively). Twenty-
two mutations were recorded to have occurred de novo in at least one
individual, whilst four mutations were only ascertained in familial cases
demonstrating autosomal dominant transmission (two mutations,
p.Ala489Thr and p.Gly495Arg, were transmitted from a father in whom
the mutation arose de novo). Three mutations, p.Thr331Arg,
p.Arg779Cys, and p.Arg779His, was documented to have occurred both
de novo, in association with severe, AGS-like, neurological disease, and in
families with transmission across two or more generations.

For six putative mutations (p.Gly389Arg; p.Asn449Lys; p.lle583Val;
p.lle803Phe; p.Asp848Gilu; p.lle956Val), in silico predictions using both
SIFT and Poyphen2 suggested that the substitutions were benign, with
relatively poor evolutionary conservation (Figure S1). However, all of
these variants were novel (i.e., not recorded in gnomAD), and assays of
interferon signaling (ISG expression and in vitro testing) indicate that they
represent pathogenic mutations conferring gain-of-function (Table S1;
Figure S2). Of note, four of these variants were seen in the context of a

spastic paraparesis phenotype with no or minimal cognitive impairment.
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rg ys Thr829Ser (1)
Gly389Arg (1)| Glu444Gly (1) Arg779His (10) Asp848Glu (1)
Thr331Arg (2) Ala489Thr (1) Ala7‘1‘;£\l,:|2?ﬁ'" (6) lle956Val (1)
Thr331lle (1) Gly495Arg (1) |1e583Val 1) | Leu979Trp (1)
—— CARD —{ CARD Hell Hel2i Hel2 P D —
7 97 110 211 306 525 549 697 837 899 1014
698 838 900
Leu372Phe Glu813Asp
Alad52Thr

FIGURE 1 Schematic showing the positions of protein domains and their amino acid boundaries within the 1,025-residue IFIH1 protein. The
27 mutations ascertained in the present study are annotated, with the numbers in brackets indicating the number of families in which each
mutation was observed. Three previously published mutations (p.Leu372Phe; p.Ala452Thr; p.Glu813Asp), not ascertained in our series, are also
denoted (below the cartoon). CARD, caspase activation recruitment domain; Hel, helicase domain, where Hel1 and Hel2 are the two conserved
core helicase domains and Hel2i is an insertion domain that is conserved in the RIG-1-like helicase family; P, pincer or bridge region connecting
Hel2 to the C-terminal domain (CTD) involved in binding double stranded RNA

Clinical nonpenetrance was observed in three of these families (the other

three variants arising in the proband de novo).

3.2 | Clinical phenotype

Consistent with previous data, we observed a spectrum of
phenotypes in our cohort, encompassing classical AGS, less easily
defined rapid neuroregression, a spastic-dystonic syndrome, spastic
paraparesis, SMS, and clinical nonpenetrance (Figure 2; Table 2;
Table S2). A single individual, AGS2222, experienced neonatal
hepatitis and then developed chronic fibrotic liver disease in the
absence of any other clinical features (note that this same variant
was seen in another proband, AGS735, presenting with neuroregres-
sion at age 1 year). Unequivocal episodes of rapid neuroregression
were noted in at least 20 patients, in seven of whom an acute loss of
skills occurred after the age of 1 year on a background of completely
normal development. Recognition/onset of symptoms was frequently
later in patients with a spastic paraparesis phenotype, with one
patient experiencing the development of lower limb spasticity
beginning at 13 years of age (AGS531_P4). Six symptomatic patients
were recorded to have died. Five of these individuals demonstrated a
severe AGS phenotype with features obvious at, or soon after, birth
that is indicating prenatal onset. One further deceased patient
presented with neuroregression at age 15 months, and died suddenly
of a cardiorespiratory arrest at 16 years of age, with pulmonary
hypertension documented on postmortem examination. Ten indivi-
duals were reported as asymptomatic mutation carriers, across five
mutations (p.Gly389Arg, p.Arg779Cys, p.Arg779His p.Asp848Glu,
and p.lle956Val), with seven aged over 50 years.

3.3 | Interferon status

Where tested, all mutations (i.e., 26 of 27) were associated with
increased expression of ISGs in peripheral blood (Table 1). Samples
were unavailable for the single patient carrying the p.Glu773GIn
substitution. This variant is not recorded in gnomAD, occurring de
IFIH1
upregulation, and conferring a gain-of-function in our in vitro assay

novo in the context of a phenotype compatible with

(Figure S2). Considering all (51) mutation-positive individuals tested
for ISG expression in the Crow laboratory (given that a direct
comparison of results across laboratories is not possible), 109 of 117
values were positive (Table S3; Figure S3). Only one clinically
symptomatic patient (AGS2154_1) demonstrated a negative inter-
feron signature (on two of three occasions tested). The phenotype, in
this case, was unusual; a child with white matter disease confined to
the right cerebral hemisphere on MRI and no abnormal neurological
signs on examination, having presented at age 8 years with
headaches. We leave open the possibility that these two normal
results, and three normal results from his mother, might be due to
technical artifact, given that the samples had been stored for many
months before testing. Sixteen samples from seven clinically
nonpenetrant subjects exhibited an upregulation of interferon
signaling, with two asymptomatic mutation carriers demonstrating

normal interferon signatures (each tested on three occasions).

3.4 | Modeling of IFIH1 gain-of-function mutations

Modeling of the 27 mutations described here showed that most

residues cluster near the ATP binding site within the helicase domain
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(Continued)

TABLE 1

Associated

Families (de novo inheritance; or,

Assessment by
interferon

phenotypes (/' within Upregulation of

family)(;’ between

number of symptomatic and non-
families)

penetrant individuals where

cDNA change Protein change familial)

Var-

CADD

interferon
signalling

Yes

score cards

31

Polyphen2

gnomAD SIFT

reporter assay

No

18:23

Deleterious O  Probably

Novel

AGS/SMS

AGS2081 (de novo)

p.Met854Lys

c.2561T>A

damaging

1.000
Benign 0.004

06:23

3.576

Tolerated
0.77

Novel

Yes (this paper)

Yes

SP-ICC/CNP

p.lle956Val AGS1430 (2;1)

c.2866A>G

Deleterious Probably 26.6 16:23
0.01

Novel

Yes (this paper)

AGS Yes

(de novo)

LD_1346.0

p.Leu979Trp

c.2936T>G

damaging
1.000

RICE ET AL

Note: IFIH1 mutation annotation based on the reference complementary DNA sequence NM_022168.2.

Abbreviations: AGS, Aicardi-Goutiéres syndrome; CLL, Chilblain-like lesions; CNP, clinical nonpenetrance; ICC, Intracranial calcification; LLD, Lupus-like disease; NPDT, no parental DNA testing; NR,

neuro-regression; SD, spastic dystonia; SP, spastic paraparesis; SMS, Singleton Merten syndrome.

2This mutation was shown to have been paternally inherited by the proband and to have occurred de novo in the proband’s father.

= 44.12% Aicardi-Goutiéres syndrome
[ 14.71% Spastic paraparesis

[ 20.59% Clinically non-penetrant

= 10.29% Neuroregression (> age 1 year)
[ 10.29% Singleton-Merten syndrome

Total=68

FIGURE 2 Overview of phenotypes observed in the
IFIH1-mutation-positive cohort. Classification of 68 of 74 individuals
according to phenotype. For clarity, six individuals displaying
characteristics difficult to classify were omitted from this analysis

(Figure 3). Three mutations, p.lleu583Val, p.lleu956Val, and p.Leu979Trp
were the only residues not situated in the cluster (colored cyan; only
p.lleu583Val and p.Leu979Val are shown since residue p.lleu956 is
disordered in the crystal structure). Within this main cluster, residues can
be further categorized into three groups: those at the ATP binding pocket
(magenta spheres), those in the double stranded RNA (dsRNA) binding
surface (colored blue) and those not directly involved in either ATP or
RNA binding (colored green). Three published mutations (p.Leu372phe;
p.Alad452Thr; p.Glu813Asp; Table S4) not ascertained in our cohort are
also located within the main cluster (colored orange), further supporting

the importance of this region in the regulation of IFIH1 signaling activity.

4 | DISCUSSION

Here we present data on 74 individuals, 41 previously unreported, from
51 families, with a putative gain-of-function mutation in IFIH1. Consistent
with previous descriptions, we observed a spectrum of phenotypes,
encompassing AGS, spastic-dystonia, spastic paraparesis, SMS and clinical
nonpenetrance. Phenotypic variability was common, both in the context
of familial inheritance and mutations seen recurrently across families so
that no obvious genotype-phenotype correlations could be ascertained.

Acute regression was noted in almost one-third of symptomatic
mutation carriers, occurring after the age of 1 year in seven patients
demonstrating completely normal development to that time. Beyond
acute regression, a slower onset of disease, and subsequent progression,
was seen in patients demonstrating a spastic paraparesis phenotype.
Together with the observation of clinical nonpenetrance (10: 13.5% of 74
mutation-positive individuals in our series), with seven individuals
identified to be apparently disease-free beyond the age of 50 years,
these data suggest the importance of additive genetic factors and/or
environmental triggers in determining phenotypic status. Although we did
not formally record neuroimaging features in our cohort, white matter
disease and intracranial calcification were observed frequently. Such
imaging characteristics can be seen in the absence of overt neurological
signs (see Bursztejn et al., 2015 and de Carvalho et al., 2017). Conversely,
significant neurological disease, most typically spastic paraparesis, can
occur in the context of normal brain and spinal imaging (e.g,, the father in
family AGS524).
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RICE ET AL

Hel1

FIGURE 3 Mutation mapping. Structure of human IFIH1 (4GL2) in
complex with double stranded RNA (dsRNA,; blue stick model in the
center). Only the RNA binding domain (helicase domain and C-
terminal domain, CTD) are included in the crystal structure. Note that
the helicase domain consists of Hell, Hel2i, and Hel2. Mutations are
indicated by spheres using the following color code: residues in the
ATP binding pocket (magenta), residues in the dsRNA binding surface
(blue), residues within the main cluster but not directly involved in
RNA binding or ATP binding (green), residues outside the main cluster
(cyan), and residues previously reported by others but not in our
cohort (orange). We considered all 27 mutations reported here plus
three previously published mutations (p.Leu372Phe; p.Ala452Thr;
p.Glu813Asp) not ascertained in our series. Residues p.Arg822,
p.Arg824, and p.lle956 are not shown because they are disordered in
the crystal structure, but are expected to be located in the ATP
binding (p.Arg822 and p.Arg824) and RNA binding (p.lle956) pockets

Clinically manifest extraneurological illness was uncommon in our
series, but there appears to be a real association between IFIH1 gain-of-
function and lupus-like illness, autoimmune hepatitis, and hypothyroidism.
Furthermore, psoriatic-like skin disease is a well-recognized feature
of the SMS phenotype. As recently described (Adang et al., 2018), two
patients included here were diagnosed with pulmonary hypertension,
a feature which was not searched for in most patients and may be
under-recognized.

We observed a strong association of mutation status with an
enhanced expression of ISGs, with 109 of 117 samples from 51 patients
being positive in the experience of one laboratory. A similar conclusion
can be drawn from in vitro testing. As such, upregulated interferon
signaling represents a reliable biomarker of IFIH1 gain-of-function, and
can serve as an indicator of variant pathogenicity where doubt exists as
to the significance of a molecular lesion. This is important given
that we show here that in silico algorithms do not always accurately
predict pathogenicity (involving 22% of the mutations that we recorded).
Where tested, clinical nonpenetrance was also associated with a
persistent upregulation of interferon signaling, with only two of nine
such individuals nonpenetrant on ISG testing in blood. Whether these
individuals demonstrate fluctuations in ISG expression is not known

at this time.

Despite documented clinical nonpenetrance in some cases, all
putative IFIH1 gain-of-function substitutions are rare, with only two of
the 30 discrete mutations described here and in previous reports
recorded in gnomAD. Furthermore, all ascertained type | interferono-
pathy associated mutations are missense variants, likely conferring
increased sensitivity to a self-derived nucleic acid. Although premature
termination mutations in the helicase domain are seen in control
populations as common polymorphisms, none has been associated with a
type | interferonopathy phenotype, further supporting the role of nucleic
acid binding by the helicase domain in disease pathogenesis. Substitutions
of the arginine residues at positions 720 and 779 were seen in six and 19
probands, respectively, in our series. Given the focus of our laboratories
on pediatric neurological disease, our data are likely to subject to
ascertainment bias. Indeed, although only observed once by us, the
p.Arg822GIn mutation has been reported in an additional five pedigrees
demonstrating a classical SMS phenotype (Pettersson et al, 2017,
Rutsch et al., 2015).

IFIH1 is a member of the retinoic acid-inducible gene | (RIG-1)
receptor family (del Toro Duany, Wu, & Hur, 2015). Recognition
of cytoplasmic viral dsRNA by IFIH1 induces filament assembly
along the dsRNA axis, with the helicase domains and C terminal
domain responsible for RNA recognition. Filament formation then
induces oligomerization of the tandem CARD domains (2CARD)
of IFIH1, leading to the interaction with mitochondrial MAVS and
subsequent induction of interferon and other proinflammatory
cytokines. IFIH1 filament stability is intrinsically regulated by
ATP hydrolysis, which is stimulated upon dsRNA binding.
Mutations that impair ATP hydrolysis generally increase filament
stability and, often, but not always, confer gain-of-function
signaling activity. The clustering of mutations that we ascer-
tained, and of a further three unique published mutations, near
the ATP binding region likely highlights common mechanisms,
perhaps increasing RNA binding affinity or decreasing the
efficiency of ATP hydrolysis and the rate of filament disassembly.

Summarizing, IFIH1 gain-of-function is associated with a spectrum of
phenotypes, occurring due to de novo mutations or transmitted as an
autosomal dominant trait. Testing for an interferon signature in blood
represents a useful biomarker in this context, which can aid in the
interpretation of identified sequence variants.
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