163 research outputs found

    John A. McClure. Late Imperial Romance

    Get PDF

    Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures

    Get PDF
    Russelite bismuth tungstate (Bi2WO6) has been widely reported for the photocatalytic degradation and mineralization of a myriad of pollutants as well as organic compounds. These materials present perovskite-like structure with hierarchical morphologies, which confers excellent optoelectronic properties as potentials candidates for photocatalytic solar fuels production. Here, we propose the development of Bi2WO6/TiO2 heterojunctions for CO2 photoreduction, as a promising solution to produce fuels, alleviate global warming and tackle fossil fuel shortage. Our results show an improvement of the photocatalytic activity of the heterojunctions compared to the pristine semiconductors. Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) experiments reveals a preferential CO2 adsorption over TiO2. On the other hand, transient absorption spectroscopy measurements show that the charge transfer pathway in Bi2WO6/TiO2 hybrids leads to longer-lived photogenerated carriers in spatially separated redox active sites, which favor the reduction of CO2 into highly electron demanding fuels and chemicals, such as CH4 and C2H6Financial support has been received from the European Research Council (ERC), through HYMAP project (grant agreement No. 648319), under the European Union's Horizon 2020 research and innovation program, as well as from the Marie Sklodowska-Curie grant agreement No. 754382. L.C. acknowledges funding from the project ARMONIA (PID2020–119125RJ-I00) funded by MCIN/AEI/10.13039/ 501100011033. Financial support has also been received from AEIMINECO/FEDER (Nympha Project, PID2019–106315RB-I00), "Comunidad de Madrid" regional government, and the European Structural Funds (FotoArt-CM project, S2018/NMT-4367). Authors also acknowledge financial support from the grant PLEC2021–007906 funded by MCIN/AEI/10.13039/501100011033 and the "European Union NextGenerationEU/PRTR"

    Dwarf Galaxies in CDM, WDM, and SIDM: Disentangling Baryons and Dark Matter Physics

    Get PDF
    We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of Mhalo1010M_\mathrm{halo} \approx 10^{10}\,M_\odot at z=0z=0, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r1/2<500_{1/2}<500 pc) have lower σ/Vmax\sigma_\star/V_\mathrm{max} ratios, reinforcing the idea that smaller dwarfs may reside in halos that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in Λ\LambdaCDM. The V1/2_{1/2}-r1/2_{1/2} relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Spatially-resolved rotation curves in the central regions (<400<400 pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r1/2_{1/2} values can only originate from dark matter self-interactions.Comment: 16 pages, 12 figures. V2: matches version accepted by MNRA

    Hydroxamate Titanium−Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity

    Get PDF
    The chemistry of Metal-Organic Frameworks (MOFs) relies on the controlled linking of organic molecules and inorganic secondary building units to assemble an unlimited number of reticular frameworks. However, the design of porous solids with chemical stability remains still limited to carboxylate or azolate groups. There is a timely opportunity to develop new synthetic platforms that make use of unexplored metal binding groups to produce metal-linker joints with hydrolytical stability. Living organisms use siderophores (iron carriers in greek) to effectively assimilate iron in soluble form. These compounds make use of hard oxodonors as hydroxamate or catecholate groups to coordinate metal Lewis acids like iron, aluminium or titanium to form metal complexes very stable in water. Inspired by the chemistry of these microorganisms, we report the first hydroxamate MOF prepared by direct synthesis. MUV-11 (MUV = Materials of Universidad de Valencia) is a crystalline, porous material (close to 800 m2·g-1) that combines photoactivity with good chemical stability in acid conditions. By using a high-throughput approach, we also demonstrate that this new chemistry is compatible with the formation of single crystalline phases for multiple titanium salts, thus expanding the scope of precursors accessible. Titanium frameworks are regarded as promising materials for photocatalytic applications. Our photoelectrochemical and catalytic tests suggests important differences for MUV-11. Compared to other Ti-MOFs, changes in the photoelectrochemical and photocatalytic activity have been rationalized with computational modelling revealing how the chemistry of siderophores can introduce changes to the electronic structure of the frontier orbitals, relevant to the photocatalytic activity of these solids

    Functionally heterogeneous human satellite cells identified by single cell RNA sequencing.

    Get PDF
    Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations

    CHOP Chemotherapy for Aggressive Non-Hodgkin Lymphoma with and without HIV in the Antiretroviral Therapy Era in Malawi

    Get PDF
    There are no prospective studies of aggressive non-Hodgkin lymphoma (NHL) treated with CHOP in sub-Saharan Africa. We enrolled adults with aggressive NHL in Malawi between June 2013 and May 2015. Chemotherapy and supportive care were standardized, and HIV+ patients received antiretroviral therapy (ART). Thirty-seven of 58 patients (64%) were HIV+. Median age was 47 years (IQR 39–56), and 35 (60%) were male. Thirty-five patients (60%) had stage III/IV, 43 (74%) B symptoms, and 28 (48%) performance status ≥2. B-cell NHL predominated among HIV+ patients, and all T-cell NHL occurred among HIV- individuals. Thirty-one HIV+ patients (84%) were on ART for a median 9.9 months (IQR 1.1–31.7) before NHL diagnosis, median CD4 was 121 cells/μL (IQR 61–244), and 43% had suppressed HIV RNA. HIV+ patients received a similar number of CHOP cycles compared to HIV- patients, but more frequently developed grade 3/4 neutropenia (84% vs 31%, p = 0.001), resulting in modestly lower cyclophosphamide and doxorubicin doses with longer intervals between cycles. Twelve-month overall survival (OS) was 45% (95% CI 31–57%). T-cell NHL (HR 3.90, p = 0.017), hemoglobin (HR 0.82 per g/dL, p = 0.017), albumin (HR 0.57 per g/dL, p = 0.019), and IPI (HR 2.02 per unit, p<0.001) were associated with mortality. HIV was not associated with mortality, and findings were similar among patients with diffuse large B-cell lymphoma. Twenty-three deaths were from NHL (12 HIV+, 11 HIV-), and 12 from CHOP (9 HIV+, 3 HIV-). CHOP can be safe, effective, and feasible for aggressive NHL in Malawi with and without HIV

    Formation, vertex deviation, and age of the Milky Way’s bulge: input from a cosmological simulation with a late-forming bar

    Get PDF
    We present the late-time evolution of m12m, a cosmological simulation of a Milky Way-like galaxy from the FIRE project. The simulation forms a bar after redshift z = 0.2. We show that the evolution of the model exhibits behaviours typical of kinematic fractionation, with a bar weaker in older populations, an X-shape traced by the younger, metal-rich populations and a prominent X-shape in the edge-on mean metallicity map. Because of the late formation of the bar in m12m, stars forming after 10Gyr 10Gyr (z = 0.34) significantly contaminate the bulge, at a level higher than is observed at high latitudes in the Milky Way, implying that its bar cannot have formed as late as in m12m. We also study the model’s vertex deviation of the velocity ellipsoid as a function of stellar metallicity and age in the equivalent of Baade’s Window. The formation of the bar leads to a non-zero vertex deviation. We find that metal-rich stars have a large vertex deviation (∼40°), which becomes negligible for metal-poor stars, a trend also found in the Milky Way, despite not matching in detail. We demonstrate that the vertex deviation also varies with stellar age and is large for stars as old as 9Gyr 9Gyr ⁠, while 13Gyr 13Gyr old stars have negligible vertex deviation. When we exclude stars that have been accreted, the vertex deviation is not significantly changed, demonstrating that the observed variation of vertex deviation with metallicity is not necessarily due to an accreted population

    Age-Associated Methylation Suppresses SPRY1, Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle

    Get PDF
    The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated methylation in humans inhibits the replenishment of the muscle stem cell pool, contributing to a decreased regenerative response in old age. We further show that aging does not affect muscle stem cell senescence in humans
    corecore