36 research outputs found
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
An upper limit to the photon fraction in cosmic rays above 10^19 eV from the Pierre Auger Observatory
An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10^19 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favoured
The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory
We present a comprehensive study of the influence of the geomagnetic field on
the energy estimation of extensive air showers with a zenith angle smaller than
, detected at the Pierre Auger Observatory. The geomagnetic field
induces an azimuthal modulation of the estimated energy of cosmic rays up to
the ~2% level at large zenith angles. We present a method to account for this
modulation of the reconstructed energy. We analyse the effect of the modulation
on large scale anisotropy searches in the arrival direction distributions of
cosmic rays. At a given energy, the geomagnetic effect is shown to induce a
pseudo-dipolar pattern at the percent level in the declination distribution
that needs to be accounted for.Comment: 20 pages, 14 figure
An easy tool for the Monte Carlo simulation of the passage of photons and electrons through matter
2023 Acuerdos transformativos CRUEA simple Monte Carlo (MC) algorithm for the simulation of the passage of low-energy gamma rays and electrons through any material medium is presented. The algorithm includes several approximations that accelerate the simulation while maintaining reasonably accurate results. Notably, pair production and Bremsstrahlung are ignored, which limits the applicability of the algorithm to low energies (≲5MeV, depending on the medium). Systematic comparisons for both photons and electrons have been made against the MC code PENELOPE and experimental data to validate the algorithm, showing deviations in the deposited energy smaller than or around 10% in the energy interval of 0.1–5 MeV in light media. The simulation is also valid for heavy media, but with less accuracy as a consequence of the abovementioned approximations. Also X-ray fluorescence is ignored leading to some limitations for photons with energies slightly over the K-shell. The algorithm has been implemented in an open-source Python package called LegPy, which provides an easy-to-use framework for rapid MC simulations aiming to be useful for applications that do not require the level of detail of available well-established MC programs.Agencia Estatal de Investigación (España)NextGenerationEUDepto. de Estructura de la Materia, Física Térmica y ElectrónicaFac. de Ciencias FísicasInstituto de Física de Partículas y del Cosmos (IPARCOS)TRUEpu
Käytännön kosteikkosuunnittelu
Maatalouden vesiensuojelua edistetään monin tavoin. Ravinteita ja eroosioainesta sisältäviä valumavesiä pyritään puhdistamaan erilaisissa kosteikoissa. Tämä opas on kirjoitettu avuksi pienimuotoisten kosteikkojen perustamiseen. Oppaassa esitetään käytännönläheisesti kosteikon toteuttamisen eri vaiheet paikan valinnasta suunnitteluun ja rakentamiseen. Vuonna 2010 julkaistun painoksen tiedot on saatettu ajantasalle.
Julkaisu on toteutettu osana Tehoa maatalouden vesiensuojeluun (TEHO) -hanketta ja päivitetty TEHO Plus -hankkeen toimesta. Oppaan toivotaan lisäävän kiinnostusta kosteikkojen suunnitteluun ja edelleen niiden rakentamiseen