23 research outputs found

    Testing Times: an Evaluation of the Radiocarbon Chronology for Early Ceramic Vessel Production at Ust’-Karenga

    Get PDF
    This paper presents the initial results of a new phase of absolute dating at Ust'-Karenga. Three Optically-Stimulated Luminescence (OSL) dates were obtained on quartz grains extracted from Ust'-Karenga type ceramic sherds from Layers 4, 6 and 7 at Ust'-Karenga XII. These dates are used to test the reliability of the existing radiocarbon sequence and evaluate counter claims that sought to reject early dates for ceramics in the Transbaikal on the basis of a putative carbon cycle anomaly in the Transbaikal region. Our results strongly uphold the excavator's original interpretation of the site and independently confirm both the Late Pleistocene age and the long duration of the Ust'-Karenga pottery phase. The paper demonstrates the value of using independent absolute dating methods to test contested radiocarbon chronologies

    Tectonic history of the South Tannuol Fault Zone (Tuva region of the northern Central Asian Orogenic Belt, Russia) : constraints from multi-method geochronology

    Get PDF
    In this study, we present zircon U/Pb, plagioclase and K-feldspar Ar-40/Ar-39 and apatite fission track (AFT) data along the South Tannuol Fault Zone (STFZ). Integrating geochronology and multi-method thermochronology places constraints on the formation and subsequent reactivation of the STFZ. Cambrian (similar to 510 Ma) zircon U/Pb ages obtained for felsic volcanic rocks date the final stage of STFZ basement formation. Ordovician (similar to 460-450 Ma) zircon U/Pb ages were obtained for felsic rocks along the structure, dating their emplacement and marking post-formational local magmatic activity along the STFZ. Ar-40/Ar-39 stepwise heating plateau-ages (similar to 410-400 Ma, similar to 365 and similar to 340 Ma) reveal Early Devonian and Late Devonian-Mississippian intrusion and/or post-magmatic cooling episodes of mafic rocks in the basement. Permian (similar to 290 Ma) zircon U/Pb age of mafic rocks documents for the first time Permian magmatism in the study area creating prerequisites for revising the spread of Permian large igneous provinces of Central Asia. The AFT dating and Thermal history modeling based on the AFT data reveals two intracontinental tectonic reactivation episodes of the STFZ: (1) a period of Cretaceous-Eocene (similar to 100-40 Ma) reactivation and (2) the late Neogene (from similar to 10 Ma onwards) impulse after a period of tectonic stability during the Eocene-Miocene (similar to 40-10 Ma)

    Entropic Neural Optimal Transport via Diffusion Processes

    Full text link
    We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr\"odinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks

    Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement

    Get PDF
    International audienceThe Ili-Balkhash Basin in southeastern Kazakhstan is located at the junction of the actively deforming mountain ranges of western Junggar and the Tien Shan, and is therefore part of the southwestern Central Asian Orogenic Belt. The basement of the Ili-Balkhash area consists of an assemblage of mainly Precambrian microcontinental fragments, magmatic arcs and accretionary complexes. Eight magmatic basement samples (granitoids and tuffs) from the Ili-Balkhash area were dated with zircon U-Pb LA-ICP-MS and yield Carboniferous to late Permian (~ 350-260 Ma) crystallization ages. These ages are interpreted as reflecting the transition from subduction to (post-) collisional magmatism, related to the closure of the Junggar-Balkhash Ocean during the Carboniferous – early Permian and hence, to the final late Paleozoic accretion history of the ancestral Central Asian Orogenic Belt. Apatite fission track (AFT) dating of 14 basement samples (gneiss, granitoids and volcanic tuffs) mainly provides Cretaceous cooling ages. Thermal history modeling based on the AFT data reveals that several intracontinental tectonic reactivation episodes affected the studied basement during the late Mesozoic and Cenozoic. Late Mesozoic reactivation and associated basement exhumation is interpreted as distant effects of the Cimmerian collisions at the southern Eurasian margin and possibly of the Mongol-Okhotsk Orogeny in SE Siberia during the Jurassic – Cretaceous. Following tectonic stability during the Palaeogene, inherited basement structures were reactivated during the Neogene (constrained by Miocene AFT ages of ~ 17–10 Ma). This late Cenozoic reactivation is interpreted as the far-field response of the India-Eurasia collision and reflects the onset of modern mountain building and denudation in southeast Kazakhstan, which seems to be at least partially controlled by the inherited basement architecture

    CASCADE-The Circum-Arctic Sediment CArbon DatabasE

    Get PDF
    Biogeochemical cycling in the semi-enclosed Arctic Ocean is strongly influenced by land–ocean transport of carbon and other elements and is vulnerable to environmental and climate changes. Sediments of the Arctic Ocean are an important part of biogeochemical cycling in the Arctic and provide the opportunity to study present and historical input and the fate of organic matter (e.g., through permafrost thawing). Comprehensive sedimentary records are required to compare differences between the Arctic regions and to study Arctic biogeochemical budgets. To this end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) was established to curate data primarily on concentrations of organic carbon (OC) and OC isotopes (δ13C, Δ14C) yet also on total N (TN) as well as terrigenous biomarkers and other sediment geochemical and physical properties. This new database builds on the published literature and earlier unpublished records through an extensive international community collaboration. This paper describes the establishment, structure and current status of CASCADE. The first public version includes OC concentrations in surface sediments at 4244 oceanographic stations including 2317 with TN concentrations, 1555 with δ13C-OC values and 268 with Δ14C-OC values and 653 records with quantified terrigenous biomarkers (high-molecular-weight n-alkanes, n-alkanoic acids and lignin phenols). CASCADE also includes data from 326 sediment cores, retrieved by shallow box or multi-coring, deep gravity/piston coring, or sea-bottom drilling. The comprehensive dataset reveals large-scale features of both OC content and OC sources between the shelf sea recipients. This offers insight into release of pre-aged terrigenous OC to the East Siberian Arctic shelf and younger terrigenous OC to the Kara Sea. Circum-Arctic sediments thereby reveal patterns of terrestrial OC remobilization and provide clues about thawing of permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments and facilitates a wide array of future empirical and modeling studies of the Arctic carbon cycle. The database is openly and freely available online (https://doi.org/10.17043/cascade; Martens et al., 2021), is provided in various machine-readable data formats (data tables, GIS shapefile, GIS raster), and also provides ways for contributing data for future CASCADE versions. We will continuously update CASCADE with newly published and contributed data over the foreseeable future as part of the database management of the Bolin Centre for Climate Research at Stockholm University

    Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement

    No full text
    The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras

    Distribution and fluxes of dissolved organic carbon in the Arctic Ocean

    No full text
    Dissolved organic carbon, from marine biota excretions and decomposing detritus, is one of the main components of the carbon cycle in the ocean. In this study, an attempt was made to construct maps of the distribution and fluxes of DOC in the Arctic Ocean and the exchanges with the Pacific and Atlantic Oceans. Because of the limited data available a multiple linear regression technique was performed to identify significant relationships between DOC (2200 samples) and hydrologic parameters (temperature and salinity), as well as depth, horizon, latitude and offshore distance. Mapping of the DOC distribution and its fluxes was carried out at 38 horizons from 5 to 4150 m depth (resolution 1°×1°). Data on temperature, salinity and meridional and zonal components of current velocities were obtained from the Ocean Re-Analysis System 4 (ORAS4) database. All these parameters were averaged for the June–October period, the season of water sampling. The import of DOC in the Arctic Ocean is estimated to be 206 ± 17Tg C yr−1, and the export is 194 ± 23Tg C yr−1, so the import–export is balanced within the errors

    Geochemical Constraints on Petrogenesis and Tectonics of the Middle Devonian Granitic and Coeval Mafic Magmatism from the Tannuola Terrane (Northern Central Asian Orogenic Belt)

    No full text
    The Tannuola terrane, located in the northern Central Asian Orogenic Belt, comprises magmatic rocks, attributed to island-arc and collisional settings during the Early Cambrian to the Late Ordovician. However, zircon U-Pb age, geochemical, and Sr-Nd isotopic constraints demonstrate that there was a short episode of peralkaline A-type granite magmatism in the northeast border area of the Tannuola terrane. The obtained zircon U-Pb age of 387.7 ± 3.3 Ma indicates emplacement of the peralkaline A-type granitic rocks in the Middle Devonian (Eifelian–Givetian period boundary). Petrologically, these rocks are mainly composed of riebeckite granites and aplites, which are approximately synchronous with augite-rich dolerites. The granitic rocks are ferroan and calc-alkalic to alkali-calcic in composition. They are characterized by a high content of SiO2, total alkali, Zr, and total REE. Significant depletion of Ba, Sr, P, Ti, and Eu indicates fractionation of plagioclase and/or K-feldspar. The values of εNd(t) in riebeckite granites range from +5.61 to +6.55, and the calculated two-stage model age ranges between 610 and 520 Ma. Coeval dolerites on the chondrite-normalized REE pattern, (Th/Yb)pm–(Nb/Yb)pm, and Th/Yb–Nb/Yb diagrams show compositional affinity between E-MORB and OIB. They are rich in incompatible elements with high HFSE/LREE ratios (Nb/La > 1), indicating that the primary magma originated from the lithospheric mantle metasomatized by asthenosphere-derived melt. Based on these geochemical characteristics, it can be reasonably inferred that the peralkaline A-type granitic rocks, and the coeval mafic rocks, are anorogenic and were emplaced in an extensional tectonic environment despite slightly higher Y/Nb values, which might be caused by a crustal contamination effect. The geochemistry of mafic rocks suggests that the magma originated from the enriched mantle sources. The results of a zircon-saturation thermometer show high initial magma temperatures between 923 and 1184 °C, with an average of 1030 °C, indicating this rock association might be related to a mantle plume beneath the northern Central Asian Orogenic Belt
    corecore