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The Ili–Balkhash Basin in southeastern Kazakhstan is located at the junction of the actively deforming mountain
ranges of western Junggar and the Tien Shan, and is therefore part of the southwestern Central Asian Orogenic
Belt. The basement of the Ili–Balkhash area consists of an assemblage of mainly Precambrian microcontinental
fragments, magmatic arcs and accretionary complexes. Eight magmatic basement samples (granitoids and
tuffs) from the Ili–Balkhash areawere datedwith zirconU–Pb LA-ICP-MS and yield Carboniferous to late Permian
(~350–260 Ma) crystallization ages. These ages are interpreted as reflecting the transition from subduction to
(post-) collisional magmatism, related to the closure of the Junggar–Balkhash Ocean during the Carboniferous–
early Permian and hence, to the final late Paleozoic accretion history of the ancestral Central Asian Orogenic
Belt. Apatite fission track (AFT) dating of 14 basement samples (gneiss, granitoids and volcanic tuffs) mainly
provides Cretaceous cooling ages. Thermal history modeling based on the AFT data reveals that several
intracontinental tectonic reactivation episodes affected the studied basement during the late Mesozoic and
Cenozoic. Late Mesozoic reactivation and associated basement exhumation is interpreted as distant effects of
the Cimmerian collisions at the southern Eurasian margin and possibly of the Mongol–Okhotsk Orogeny in SE
Siberia during the Jurassic–Cretaceous. Following tectonic stability during the Paleogene, inherited basement
structures were reactivated during the Neogene (constrained by Miocene AFT ages of ~17–10 Ma). This late
Cenozoic reactivation is interpreted as the far-field response of the India–Eurasia collision and reflects the
onset of modernmountain building and denudation in southeast Kazakhstan, which seems to be at least partially
controlled by the inherited basement architecture.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Ili–Balkhash Basin (IBB) is aMeso-Cenozoic foreland basin to the
growing Tien Shan andWest Junggar orogens, situated in SE Kazakhstan
(Fig. 1). It is separated from the Chinese Junggar Basin (E) by the
Kazakh–Chinese West Junggar Mountains and continues southeast in
the Chinese Ili Basin (Fig. 1). To the west, the basin is bounded by the
vast Kazakhstan paleocontinent and to the northeast, at the border
zone with Siberia, by the Altai–Sayan Mountains (Fig. 1). The Trans-Ili
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and Kungey mountain ranges are part of the Kazakh–Kyrgyz Tien
Shan and separate the IBB from the intramontane Issyk-Kul Basin to
the south (Fig. 2).

The IBB is located in the southwestern part of the Central Asian Oro-
genic Belt (CAOB) (Fig. 1). The CAOB represents one of the largest Phan-
erozoic accretionary orogens in the world and stretches from North
China–Tarim, through Kazakhstan to the Siberian craton (Korobkin
and Buslov, 2011; Sengör et al., 1993; Windley et al., 2007). The CAOB
can be regarded as a complex collage of different terranes: mainly frag-
ments of microcontinents, arc and accretionary complexes. These were
amalgamated during several Paleozoic accretion–collision events, and
associated magmatic episodes, in relation to the closure of the Paleo-
Asian Ocean (e.g. Alexeiev et al., 2011; Buslov, 2011; Dobretsov and
Buslov, 2007; Filippova et al., 2001; Korobkin and Buslov, 2011;
Wilhem et al., 2012; Windley et al., 2007; Xiao et al., 2013). Final
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Fig. 1. General topographic and tectonic map of Central Asia with indication of the Central Asian Orogenic Belt (CAOB) and the Ili–Balkhash study area (white square detailed in Fig. 2).
CB = Chu Basin, FB = Ferghana Basin, IK = Issyk-Kul Basin, MGL = Mongolian Great Lakes, W-Junggar = West Junggar Mountains.
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amalgamation of the CAOB took place in the Permian andwas accompa-
nied by significant (post-) collisional tectonic and magmatic activity
(e.g. B. Wang et al., 2009; Wilhem et al., 2012). During the Mesozoic
and Cenozoic, parts of the CAOB were periodically reactivated in re-
sponse to distal tectonic events, with a final (and still active) late Ceno-
zoic shortening phase related to the India–Eurasia collision (e.g. De
Grave et al., 2007; Dumitru et al., 2001; Jolivet et al., 2010). Hence, as
a consequence of the large-scale reactivation of the CAOB, the present-
day topography is dominated by intracontinental mountain ranges
(mainly consisting of deformed Precambrian and Paleozoic basement)
separated by intramontane and foreland basins which are mainly char-
acterized by Meso-Cenozoic sedimentary deposits.

Although absolute radiometric age information on the surrounding
(mainly basement) area, i.e. the Kyrgyz Tien Shan (e.g. Bullen et al.,
2001; De Grave et al., 2011a, 2012, 2013; Glorie et al., 2010, 2011b;
Konopelko et al., 2007; Macaulay et al., 2014), the Chinese Junggar
(e.g. Hendrix et al., 1992; Shen et al., 2012; Zhou et al., 2008) and the
southern Altai (e.g. Glorie et al., 2011a, 2012a, 2012b; Tong et al.,
2014) has augmented our knowledge of the broader region, still little
is known about the geodynamic evolution of the IBB, and absolute age
data from the border zone of the aforementioned terranes is lacking.
In this perspective, we present twenty-two new ages (8 zircon U–Pb
and 14 apatite fission-track ages) from basement samples collected
around the IBB in SE Kazakhstan. Sampled basement ranges include
the adjacent Kazakh West Junggar (or Dz(h)ungarian), Trans-Ili (or
Zailisky), Zhetyzol and Chu-Ili mountains (Fig. 2). The results will
be placed in a broader geodynamic framework based on available
data in order to gain a better understanding of the thermo-tectonic
history of the southeastern Kazakh basement with the future aim
of constraining provenance indicators for Meso-Cenozoic sediment
sources in the IBB.
2. Geological setting

The IBB is located at the southeastern edge of Kazakhstan, at
the junction of the Kazakh–Chinese West Junggar Mountains and the
Kyrgyz–Chinese Tien Shan, which are part of the southwestern CAOB
(Figs. 1 and 2). The West Junggar Mountains form the southwestern
boundary of the triangular-shaped Junggar Basin and are largely com-
posed of Paleozoic magmatic arcs and accretionary complexes that
amalgamated during the late Paleozoic (Korobkin and Buslov, 2011;
Shen et al., 2012; Xiao et al., 2008). Our study area partly encompasses
the KazakhWest Junggar Mountains, which can be viewed as the west-
ward topographic continuation of the ChineseWest JunggarMountains,
more or less west of the Junggar Fault (Fig. 2).

The currently reactivated intracontinental Tien Shan orogen ex-
tends from West to East through Uzbekistan, Kazakhstan, Tajikistan,
Kyrgyzstan and China (Xinjiang province) over a distance of more
than 2000 km (Fig. 1). The Tien Shan is subdivided in different tectonic
units, but cross-boundary correlation and nomenclature through the
aforementioned countries is often not uniform. Traditionally, the west-
ern Tien Shan (post-Soviet states) is divided into three tectonic units:
the North Tien Shan (NTS), Middle Tien Shan (MTS) and South Tien
Shan (STS) units (e.g. Biske et al., 2013; De Grave et al., 2012, 2013;
Glorie et al., 2010, 2011b; Seltmann et al., 2011) (Fig. 2). TheNTSmainly
consists of Precambrian microcontinental fragments, intruded by early
Paleozoic granitoids (Glorie et al., 2010; Korobkin and Buslov, 2011)
(Fig. 3). The MTS basement is mainly composed of Precambrian crust,
covered with early–middle Paleozoic sediments and intercalations of
late Paleozoic granitoids (De Grave et al., 2013; Konopelko et al., 2007;
Seltmann et al., 2011). The STS represents a late Paleozoic accretionary
complex, related to the collision of paleo-Kazakhstanwith Tarim during
the late Paleozoic (Glorie et al., 2011b; Konopelko et al., 2007; Seltmann
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Fig. 2. Topographic map of the Ili–Balkhash study area. Sample sites are displayed as white dots. Main faults after Campbell et al. (2013), Choulet et al. (2011) and Delvaux et al. (2001).
CANTF= Chingiz–Alakol–North Tien Shan Fault, CKCF= Chon–Kemin–Chilik Fault, DNF= Dzhalair–Naiman Fault, NL = Nikolaev Line, TFF= Talas–Ferghana Fault. CTS = Central Tien
Shan, MTS = Middle Tien Shan, NTS = North Tien Shan, STS = South Tien Shan. F. = Fault, Mts = Mountains, R. = Range, SK = Song Kul lake.
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et al., 2011). Our study area is situated along the northern edge of the
Kyrgyz NTS terrane, which can be continued eastwards to the Chinese
North and Central Tien Shan assemblage (Fig. 2). The latter can be con-
sidered as an amalgamated unit existing of Precambrian continental
fragments, Paleozoic island arcs and accretionary complexes (Biske
et al., 2013; Han et al., 2011; Xiao et al., 2013). The detailed correlation
between the Kyrgyz and Chinese Tien Shan units is still a matter of de-
bate (e.g. Biske et al., 2013; Xiao et al., 2010, 2013) and falls beyond the
scope of this paper.

2.1. Paleozoic amalgamation of the Kazakhstan paleocontinent

During the early Paleozoic, the paleo-Kazakhstan basement as-
semblage was formed by successive amalgamations of Precambrian
microcontinents (likely of an Eastern Gondwana origin), and Cambrian
to early Silurian island arcs (Dobretsov and Buslov, 2007;Windley et al.,
2007). These numerous early Paleozoic accretion–collision events
and associated magmatic episodes gave rise to the formation of the
Kazakhstan paleocontinent by the late Silurian (Alexeiev et al., 2011;
Bazhenov et al., 2012; Biske et al., 2013; Filippova et al., 2001;
Korobkin and Buslov, 2011; Wilhem et al., 2012; Windley et al., 2007;
Xiao et al., 2010; Zhao and He, 2013). As a result, early Paleozoic granit-
oids associated with the collision–accretion events constructing the
Kazakhstan paleocontinent, can be found across the Kazakhstan and
NTS basement (e.g. De Grave et al., 2013; Degtyarev, 2011; Degtyarev
et al., 2006; Glorie et al., 2010; Korobkin and Buslov, 2011) (Fig. 3).

Following its amalgamation, the Kazakhstan paleocontinent re-
mained emerged during most of the Silurian and early Devonian, and
drifted northwards until the Permian (Wilhem et al., 2012; Windley
et al., 2007). During the middle and late Paleozoic, the paleocontinent
was isolated from Siberia, Europa and Tarim, and surrounded by the
Ob-Zaisan (NW), Uralia (SW), Turkestan (SE) and Junggar-Balkhash
(NE) oceans (e.g. Filippova et al., 2001; Korobkin and Buslov, 2011;
Windley et al., 2007) (Fig. 3b). These oceans are considered as sub-
basins of the Paleo-Asian Ocean. The ensuing tectonic history of the
Kazakh paleocontinent is then dominated by the closure of the afore-
mentioned ocean basins and the associated Siberia–paleo-Kazakhstan–
Tarim convergence. Subduction of the Junggar–Balkhash oceanic
lithosphere beneath the northeastern margin of the Kazakhstan
paleocontinent started in the early Devonian, resulting in a major
Andean-type magmatic belt (Windley et al., 2007) (Fig. 3). By the Late
Devonian, the subduction zone moved eastwards and arc magmatism
continued in the Ili–Balkhash region until the late Carboniferous–
earliest Permian (Filippova et al., 2001; Korobkin and Buslov, 2011;
Kröner et al., 2008; Seltmann et al., 2011; Wilhem et al., 2012;
Windley et al., 2007; Xiao et al., 2013). Simultaneously, to the southeast
of the paleocontinent, oblique closure of the TurkestanOcean took place
from the late Carboniferous until the early Permian and resulted in the
collision between Kazakhstan and Tarim (Fig. 3c). Related to the gen-
eral convergent motion between Tarim and Siberia, with Kazakhstan
trapped in between, Devonian–early Mesozoic oroclinal bending of
the Kazakhstan paleocontinent occurred (e.g. Abrajevitch et al., 2007,
2008; Choulet et al., 2011; Levashova et al., 2007, 2012; Van der Voo
et al., 2006). In addition, closure of the Ob-Zaisan and Uralian oceans
led to the final collision between paleo-Kazakhstan and Siberia and
Baltica respectively (Fig. 3b–c), resulting in the gradual consumption
of surrounding oceanic lithosphere and final amalgamation of the
ancestral CAOB by the late Permian (e.g. Buslov et al., 2004, 2013;
Windley et al., 2007). More details about the geodynamic evolution of
paleo-Kazakhstan during the Paleozoic can be found in e.g. (Korobkin
and Buslov, 2011).

2.2. Latest Paleozoic to Cenozoic intracontinental evolution

Since the final incorporation of the Kazakhstan paleocontinent in
paleo-Eurasia during the Permian, its geodynamic evolution has been
dominated by intracontinental tectonics. During the late Permian–
early Mesozoic, the Kazakhstan orocline became completely closed
and the area was affected by (1) (post-) collisional deformation and
large-scale strike-slip faulting (e.g. the Talas–Ferghana Fault, Fig. 1)
related to the relative motions of Baltica, Siberia, Junggar and Tarim,
and (2) tectonic far-field effects of collisions transpiring at the plate's
margins several hundreds of kilometers away (Abrajevitch et al.,
2008; Buslov, 2011; Buslov et al., 2003b, 2004; Choulet et al., 2011;
Levashova et al., 2012; Rolland et al., 2013; Sengör and Natal'in, 1996;
Van der Voo et al., 2006; Wilhem et al., 2012; Windley et al., 2007).
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Fig. 3. (a) Schematic overview of the key basement units of SE Kazakhstan based on Alexeiev et al. (2011), Kröner et al. (2013) and Windley et al. (2007) and references therein. AJ =
Aktau–Junggar, BC = Boshchekul–Chingiz, BY = Balkhash–Ili, C = Chu, CY = Chu-Ili, DN = Dzhailair–Naiman, EY = Erementau-Ili, IK = Issyk-Kul, JB = Junggar–Balkhash, KT =
Kyrgyz–Terskey, NB = North Balkhash, Nr = Naryn, NTS = North Tien Shan, STS = South Tien Shan. U = Upper, PZ = Paleozoic, Cm = Cambrian, O = Ordovician, D = Devonian,
C=Carboniferous, P=Permian. (b-c) Schematic reconstruction of the geodynamic setting of Siberia (SIB), Kazakhstan (KAZ), Europa (EUR) and Tarim (T) during the early Carboniferous
(b) and early Permian (c) based on Abrajevitch et al. (2008), Filippova et al. (2001) andWindley et al. (2007). Emphasis onmain sutures and faults (dashed lines) and subduction zones
(solid lines): Junggar-Balkhash subduction zone in black; Siberian, Turkestan and Paleo-Tethyan subduction zones in gray. JB = Junggar-Balkhash Ocean, OZ = Ob-Zaisan Ocean, TK =
Turkestan Ocean, UR = Uralian Ocean, TS = Tien Shan.
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Also during the Permian, the type of magmatism changed from a
collisional to a post-collisional setting (e.g. Biske et al., 2013; Kröner
et al., 2008; Windley et al., 2007; Zhao and He, 2013). Traces of this
post-collisional magmatic episode (mainly A-type and (per-)alkaline
magmatism) can be found in e.g. the Kyrgyz North Tien Shan (De
Grave et al., 2013; Kröner et al., 2008), the Chinese Central Tien Shan
(Dong et al., 2011), the Chinese West Junggar (Shen et al., 2013a) and
southern Altai (Tong et al., 2014).

During the latest Paleozoic–Mesozoic, the CAOB was repeatedly
reactivated as a distant effect related to the closure of the Paleo-
Tethys and/or Mongol–Okhotsk oceans (e.g. De Grave et al., 2013;
Table 1
Sample localities, lithology and used methods. AFT = Apatite Fission-Track dating, ZUPb = zir

Sample Latitude (N) Longitude (E) Alt. (m) Sam

11-01 45°16′25.5″ 079°20′49.0″ 1000 Kaza
11-07 44°53′39.3″ 079°01′56.9″ 1718 Kaza
11-09 44°53′36.1″ 079°09′38.1″ 1763 Kaza
11-11 44°53′05.9″ 078°58′42.1″ 2029 Kaza
11-20 44°53′05.9″ 078°58′42.1″ 2029 Kaza
SK-17 44°14′ 35.0″ 079°28′16.3″ 1168 Alty
SK-21 44°11′07.4″ 078°32′25.3″ 1542 Alty
SK-22 44°28′44.1″ 077°55′38.8″ 930 Mala
11-27 43°03′21.5″ 076°58′59.2″ 2510 Tran
11-28 43°02′22.3″ 076°56′40.0″ 3379 Tran
SK-31 42°54′54.0″ 076°13′05.2″ 3076 Tran
SK-32 42°55′10.2″ 076°13′00.7″ 3357 Tran
SK-05A 43°20′24.0″ 078°56′01.6″ 1337 Soge
10-20 43°19′38.1″ 074°51′57.0″ 904 Zhet
10-40 45°42′31.5″ 073°30′20.4″ 344 Near
10-42 47°21′39.3″ 074°44′18.2″ 576 Bekt
Jolivet, in press; Jolivet et al., 2010, 2013b). Evidence for these reactiva-
tion episodes is often documented in the cooling histories of the
exhumed basement rocks and in the sediments of the intervening
basins, but the extent of these reactivation events is still under dis-
cussion (e.g. De Grave et al., 2007; Dumitru et al., 2001; Glorie and
De Grave, in press; Jolivet et al., 2013a,b; Vandoorne et al., 2011;
Yang et al., 2015). Due to the closure of the Paleo-Tethys Ocean, several
accretion–collision events took place at the southern Eurasian margin
resulting in the creation of the Mesozoic Tien Shan (e.g. De Grave
et al., 2013; Dumitru et al., 2001; Jolivet, in press; Yang et al., 2013).
These events are often grouped as the Cimmerian Orogeny and include
con U–Pb dating.

ple site Lithology Method

kh West Junggar Range Granite AFT and ZUPb
kh West Junggar Range Diorite AFT and ZUPb
kh West Junggar Range Diorite AFT and ZUPb
kh West Junggar Range Diorite AFT
kh West Junggar Range Granite AFT and ZUPb
n-Emel Range Tuff ZUPb
n-Emel Range Granodiorite AFT and ZUPb
ysari Range Tuff ZUPb
s-Ili Range Diorite AFT
s-Ili Range Granite AFT
s-Ili Range Gneiss AFT
s-Ili Range Gneiss AFT
ti Range Granite AFT and ZUPb
yzol Range Granite AFT
Priozersk (W of Lake Balkhash) Granite AFT
auta mountain (N of Lake Balkhash) Granite AFT

Image of Fig. 3


Fig. 4. Simplified geologicalmap of the Ili-Balkhash study area based on the geologicalmap ofWestern China and adjacent regions (IGCAGS, 2006) and othermore detailedmaps. Sample sites are displayed as black dots.Main faults after Campbell et al.
(2013), Choulet et al. (2011) and Delvaux et al. (2001). CKCF = Chon–Kemin–Chilik Fault, DNF = Dzhalair–Naiman Fault, NL = Nikolaev Line, TFF = Talas–Ferghana Fault. F. = Fault, Mts = Mountains.
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collision of the Pamir–Tibetan blocks. In this context, collision of
the Qiangtang block took place in the Late Triassic; the Lhasa block in
the Late Jurassic–Early Cretaceous; the Karakoram block and the
Kohistan–Dras arc in the Late Cretaceous. In addition, the Mongol–
Okhotsk Orogenic Belt (MOOB) was formed by the diachronous oceanic
closure betweenMongolia–North China and Siberia during the Jurassic–
Cretaceous (Metelkin et al., 2010, 2012; Wilhem et al., 2012 and refer-
ences therein; Zorin, 1999). The MOOB seems to have mainly affected
the areas northeast of the Tien Shan (e.g. the Altai–Sayan; Glorie and
De Grave, in press).

Following these Mesozoic reactivation episodes, the study area
became tectonically more stable and evidence exists that a mature pe-
neplain developed during the Late Cretaceous–early Paleogene (Allen
et al., 2001; Bullen et al., 2001, 2003; De Grave et al., 2013; Delvaux
et al., 2013; Glorie et al., 2010; Macaulay et al., 2014). Since the early
Eocene, major structures in the southern CAOB were reactivated,
which is likely a response to the continuous closure of the Tethys
Ocean and associated accretions of island-arcs or continental slivers of
‘Greater India’ to the southern Eurasian margin (e.g. Glorie and De
Grave, in press; Glorie et al., 2011b). From the late Oligocene–Miocene
onwards, the southern CAOB was once more subjected to deformation,
this time induced by the India–Eurasia collision. This is shown by low
temperature thermochronology (e.g. Bullen et al., 2001; De Grave
et al., 2013; Glorie et al., 2012a; Hendrix et al., 1994; Macaulay et al.,
2014), sedimentology (e.g. Thomas et al., 1999), magnetostratigraphy
and structural geology (e.g. Abdrakhmatov et al., 1996; Buslov et al.,
2007; Campbell et al., 2013).

3. Samples and methods

3.1. Sample sites

The basement of SE Kazakhstan, and in particular the Ili–Balkhash
study area, can be subdivided into different structural units based
on Alexeiev et al. (2011), Kröner et al. (2013) and Windley et al.
(2007) (Fig. 3a). The main units can be summarized as: (1) Kyrgyz
North Tien Shan (NTS), Chu-Ili (CY) and Aktau–Junggar (AJ) Precambri-
anmicrocontinental blocks; (2) Cambrian–Ordovician Dzhalair–Naiman
(DN) and Kyrgyz–Terskey (KT) accretionary complexes; (3) dispersed
remnants of an Ordovician arc within the Kyrgyz NTS, KT and DN
units; (4) Ordovician–Late Devonian North Balkhash (NB) accretionary
Table 2
Operating conditions for ZUPb LA-ICP-MS analysis at the laboratory of Géosciences
Rennes, Université Rennes 1, France.

Laser-ablation system ESI NWR193UC

Laser type/wavelength Excimer 193 nm
Pulse duration b5 ns
Energy density on target ~7 J/cm2

ThO+/Th+ b0.5%
He gas flow 800 ml/min
N2 gas flow 4 ml/min
Laser repetition rate 3 Hz
Laser spot size 25 μm

ICP-MS Agilent 7700x
RF power 1350 W
Sampling depth 5.0–5.5 mm (optimized daily)
Carrier gas flow (Ar) ~0.85 l/min (optimized daily)
Coolant gas flow 16 l/min
Data acquisition protocol Time-resolved analysis
Scanning mode Peak hopping, one point per peak
Detector mode Pulse counting, dead time correction applied,

and analog mode when signal intensity N ~106 cps
Isotopes determined 204(Hg + Pb), 206Pb, 207Pb, 208Pb, 232Th, 238U
Dwell time per isotope 10–30 ms
Sampler, skimmer cones Ni
Extraction lenses X type
complex; (5) Late Devonian–Carboniferous Junggar Balkhash (JB) accre-
tionary complex; (6) Late Devonian–Permian Balkhash–Ili (BY) active
continental margin arc and (7) Devonian to Permian epicontinental
and non-marine sediments (Chu Basin). In this study, we present 22
new ages (14 apatite fission track and 8 zircon U–Pb ages) obtained on
16 basement samples (i.e. granitoids, volcanic tuff and gneiss; Table 1)
collected frommountain ranges surrounding the IBB. Sampledmountain
ranges are the Kazakh West Junggar, Altyn-Emel, Malaysari, Trans-Ili,
Sogeti, Zhetyzol and Chu-Ili Ranges (Table 1, Fig. 2).

In the Kazakh West Junggar Mountains and neighboring ranges,
Permian plutons of the Balkhash–Ili (BY) magmatic belt are exposed
in the highest mountain ridges (Figs. 2, 3 and 4). These Permian granit-
oids cross-cut folded Devonian–Carboniferous rocks and are in their
turn displaced by strike-slip faults, such as the Aktas Fault (Figs. 2
and 4). Samples 11-01, 11-07 and 11-09 were collected from these
Permian granitoids, whereas samples SK-17, SK-21 and SK-22 were
taken from surrounding Devonian–Carboniferous magmatic rocks
(Fig. 4). Samples 11-11 (diorite) and 11-20 (granite) come from the
same location in the Kazakh West Junggar Mountains, but differ in
lithology and probably represent a contact zone between Permian and
Devonian–Carboniferous intrusions. At the southern border of the IBB,
in the Trans-Ili, Sogeti and Zhetyzol Ranges, intrusive bodies are mostly
of Late Ordovician–Silurian age, while minor amounts of Carboniferous
and Permian intrusive rocks are also common (De Grave et al., 2013;
IGCAGS, 2006). From these mountain ranges, granitoid samples 10-20,
11-27, 11-28, SK-05A, SK-31 and SK-32 were collected (Figs. 2 and 4,
Table 1). The northern edge of the Zhetyzol Range is defined by the
Dzhalair–Naiman strike-slip fault (DNF), which continues westward
along the Chu-Ili Range into the Kazakhstan platform (Campbell et al.,
2013) (Figs. 2 and 4).More to the south, the Trans-Ili Range is separated
from the Kungey Range of the Kyrgyz Tien Shan by the Chon–Kemin–
Chilik Fault system (CKCF) (Figs. 2 and 4). To the northwest of the IBB,
along the northern continuation of the Chu-Ili Mountains and near
Lake Balkhash, samples 10-40 and 10-42were taken from late Paleozoic
(Carboniferous–Permian) granitoid bodies (Figs. 2 and 4, Table 1).

3.2. Zircon U–Pb (ZUPb) dating

The ZUPb dating method is based on the (α, β)-decay of 238U and
235U to stable 206Pb and 207Pb, respectively. Due to its high closure tem-
perature (N800 °C, Cherniak andWatson, 2003), the ZUPb system dates
the (re)crystallization of the zircon-bearing basement rock. In the case
of unmetamorphosed granitoid rocks, this high-temperature method
normally yields the emplacement age of the magmatic body.

For each sample analyzed, around 30–70 zircon grains were
handpicked and mounted in epoxy resin, after which their surface was
polished. Zircon grains were imaged for their cathodoluminescence
(CL) properties, using a JEOL JSM-6400 Scanning Electron Microscope
(SEM) at theDepartment of Geology and Soil Sciences, Ghent University,
Belgium. Core–rim relationships were investigated and obvious inclu-
sions and microfractures were avoided during further Laser Ablation–
Inductively Coupled Plasma–Mass Spectrometry (LA-ICP-MS) analysis.

The ZUPb analyses were partly carried out at the LA-ICP-MS facility
of theDepartment of Analytical Chemistry at Ghent University (samples
11-01, 11-07, 11-09), following the procedures described in Glorie et al.
(2011a, 2015), and partly at the laboratory of Géosciences Rennes at the
Université of Rennes 1 in France (samples 11-20, SK-05A, SK-17, SK-21,
SK-22), following the procedures described below and listed in Table 2.
In the laboratory of Géosciences Rennes, ablationwas performed using a
ESI NWR193UC laser system, powered by a Coherent ExciStar XS
Excimer laser operating at a wavelength of 193 nm. The laser repetition
rate was 3 Hz and the beam diameter 25 μm. Ablated material was
carried to the mass spectrometer using He gas (flow rate ~0.8 l/min),
and thenmixedwith N2 (at ~0.04 l/min) and Ar (at ~0.85 l/min), before
being introduced into the ICP source of an Agilent 7700x quadrupole-
based ICP-MS instrument, equipped with a dual pumping system to



Table 3
Zircon U–Pb LA-ICP-MS dating results. Each parameter in the table is calculated based on the arithmeticmean.Multiple age-componentswithin one sample (as interpreted from the Tera-
Wasserburg diagrams in Fig. 5) are listed separately. a = U and Pb concentrations and Th/U ratios calculated relative to the GJ-1 zircon standard. b =Number of analyses used to calculate
the preferred zirconU/Pb age. c= Preferred ages calculatedwith Isoplot (Ludwig, 2003) after interpretation based on the Tera-Wasserburg diagrams in Fig. 5. Amore detailed table, listing
the results for each analyzed spot, can be found in Supplementary Table S1.

Sample name Sample site Lithology Ua

(ppm)
Pba

(ppm)
Th/Ua Nb Preferred agec

(Ma)
Age calculation
(weighted mean)

11-01 Kazakh W Junggar R. Granite 385 17 0.34 18 298 ± 4 206Pb/238U age
11-07 Kazakh W Junggar R. Granodiorite 588 26 0.73 29 297 ± 2 206Pb/238U age
11-09 Kazakh W Junggar R. Granodiorite 4876 188 0.41 17 260 ± 3 206Pb/238U age
11-20 Kazakh W Junggar R. Granite 799 45 0.68 15 296 ± 2 206Pb/238U age
SK-17 Altyn-Emel Range Tuff 214 8 0.60 16 331 ± 2 206Pb/238U age

226 8 3.89 7 311 ± 4 206Pb/238U age
SK-21 Altyn-Emel Range Granodiorite 137 9 0.75 34 341 ± 2 206Pb/238U age
SK-22 Malaysari Range Tuff 167 12 1.53 16 320 ± 2 206Pb/238U age
SK-05A Sogeti Range Granite 241 15 0.73 8 351 ± 3 206Pb/238U age

227 13 0.70 17 332 ± 2 206Pb/238U age
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enhance sensitivity. Tuning of the instrument andmass calibrationwere
performed using NIST SRM 612 reference glass, by monitoring the 238U
signal and minimizing the ThO+/Th+ ratio (b0.5%). Analyses consisted
of the acquisition of the 204(Pb + Hg), 206Pb, 207Pb, 208Pb, 232Th and
238U signal intensities. The 235U abundancewas calculated from the sig-
nal intensity measured for 238U on the basis of a 238U/235U ratio of
137.88 (Steiger and Jäger, 1977). Each analysis consisted of a succession
of ~20 s background measurement prior to ablation, followed by ~60 s
of zircon ablation and ~10 s wash out time. The analyses were per-
formed in time-resolved mode and the raw data were corrected for
Pb/U and Pb/Th laser-induced elemental fractionation and for instru-
mentalmass discrimination by standard bracketingwith repeatedmea-
surements of the zircon reference material GJ-1 (Jackson et al., 2004).
Along with the unknowns, the Plešovice zircon standard (Sláma et al.,
2008) was measured to monitor the accuracy. Throughout the entire
measurement time, the Plešovice zircon standard provided a concordia
age of 336.9 ± 2Ma (N= 17), which is in good agreement with the re-
ported ID-TIMS age of 337.1 ± 0.4 Ma (Sláma et al., 2008). Data reduc-
tion was carried out with the GLITTER software package (Jackson et al.,
2004) and in-house Excel spreadsheets to deduce the U, Th and Pb con-
centrations. Ages were calculated with the Isoplot software (Ludwig,
2003) and are presented in Table 3.
3.3. Apatite fission track (AFT) dating

Apatite fission track (AFT) dating is a low-temperature thermo-
chronological method based on the spontaneous fission decay of 238U,
which is present as a trace element in the crystal lattice of apatite. By
this process, the apatite lattice accumulates linear radiation damage
tracks or fission tracks. At temperatures (T) lower than ~60 °C, fission
tracks in apatite are considered stable on geological time scales, where-
as at T N ~120–140 °C (e.g. Ketcham et al., 1999; Wagner and Van den
haute, 1992) the crystal lattice regenerates and the fission tracks anneal
rapidly. The ~60–120/140 °C window (±2–4 km crustal depth) is
known as theApatite Partial Annealing Zone (APAZ) and depends partly
on the chemical composition of the apatite crystal (e.g. Barbarand et al.,
2003; Carlson et al., 1999; Green et al., 1986; Wagner and Van den
haute, 1992). In this temperature window, tracks can accumulate but
are progressively shortened (partial annealing), resulting in reduced
mean track lengths and broader length–frequency distributions
(Gleadow et al., 1986). The AFT age, based on the measurement of
the spontaneous fission track density, hence records cooling of the
apatite-bearing basement rock through the APAZ. In addition, the AFT
length–frequency distribution is a supplementary tool to evaluate the
thermal history of the rock. Hence, this allows the reconstruction of
basement cooling paths (thermal history modeling; e.g. Gallagher,
2012; Ketcham, 2005; Ketcham et al., 2000), which can be linked to
the exhumation history of mountain belts.
All samples were analyzed by the external detector (ED) method
with thermal neutron irradiation, following the standard AFT procedure
from the geochronology laboratory at Ghent University described by De
Grave and Van den haute (2002), De Grave et al. (2009, 2011a) and
Glorie et al. (2010). Spontaneous fission tracks in apatite were etched
in a 5.5 M HNO3 solution for 20 s at 21 °C (Donelick et al., 1999). Irradi-
ation was carried out in the Belgian Reactor 1 (BR1) facility of the
BelgianNuclear Research Centre inMol. Obtained AFT ages are reported
in Table 4 as conventional zeta-ages (Hurford, 1990), calculated using
an overall weighted mean zeta of 229.8 ± 4.9 a.cm2 (personal calibra-
tion factor of E. De Pelsmaeker) based on Durango and Fish Canyon
Tuff apatite age standards and IRMM 540 dosimeter glasses (De Corte
et al., 1998). AFT ageswere also calculated as central ages and evaluated
by a radial plot to check for potential multiple AFT populations
(Galbraith, 1990; Vermeesch, 2009) (Table 4). Where possible, 100
horizontal confined tracks for each sample weremeasured on prismatic
sections parallel to the crystallographic c-axis to construct length–
frequency distributions, a threshold which was not always attained in
this study (Table 4). For some samples, no AFT length data is available
due to low spontaneous track densities and/or a low number of suitable
grains. To estimate the annealing behavior of the counted grains with
measured confined track lengths, measurements of the kinetic parame-
ter Dpar (mean etch pit diameter parallel to the crystallographic c-axis;
Carlson et al., 1999; Donelick et al., 2005) were carried out.

Thermal history modeling was performed using the HeFTy software
(Ketcham, 2005), the Ketcham et al. (2007) annealing equations
and the Monte Carlo search method for inverse modeling. Modeling-
constraints were based on geological arguments as expected emplace-
ment ages derived from geological maps and ZUPb and AFT ages obtain-
ed in this study. In addition, present-day ambient surface conditions
were used as low temperature constraint. In the resulting models, only
time–temperature (tT) paths with “good” fits are drawn (Ketcham,
2005).
4. Results

4.1. Zircon U–Pb data

Cathodoluminescence (CL) imaging reveals oscillatory zoning for
most of the analyzed zircon crystals, which is indicative for their mag-
matic origin (Corfu et al., 2003; Hoskin, 2000). Fig. 5 presents the
resulting U–Pb Tera–Wasserburg diagrams (Isoplot software; Ludwig,
2003), which are characterized by near-concordant Carboniferous–
Permian zircon age clusters. Most samples in the Tera–Wasserburg dia-
grams show some dispersion in both 207Pb/206Pb as well as 238U/206Pb
which is likely related to the presence of a small quantity of common
Pb and minor zero age Pb loss respectively. As a result, their preferred
formation age was calculated from the mean 206Pb/238U ratios. For
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Fig. 5. Zircon U–Pb Tera–Wasserburg diagramswith insets of weightedmean 206Pb/238U ratios for each analyzed sample (drawnwith Isoplot; Ludwig, 2003). All data-point error ellipses
are calculated at 2σ level.
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Table 4
Apatite Fission Track analyses results. n is the number of counted grains. ρs and ρi correspond to the density of spontaneous tracks (in the apatite) and induced tracks (in the external
detector, ED) respectively. ρd-values are interpolated values of the density of induced tracks in the ED irradiated against regularly spaced glass dosimeters (IRMM-540). ρs and ρi are
expressed as 106 tracks/cm2; ρd is expressed as 105 tracks/cm2. Ns and Ni are the number of counted spontaneous tracks (in the apatite) and induced tracks (in the ED) respectively.
Nd is the interpolated value of the number of counted induced tracks in the ED irradiated against regularly spaced glass dosimeters. P(χ2) is the chi-squared probability that the dated
grains have a constant ρs/ρi-ratio. For the calculation of the AFT zeta-age t(ζ) (in Ma), a ζ-value of 229.8 ± 4.9 a.cm2 was used, based on Durango and Fish Canyon Tuff age standards.
AFT ages were also calculated as central ages t(c) (in Ma). AFT length results are reported as mean track length (lm in μm)with standard deviation σ (in μm), obtained from themeasure-
ment of an amount (nl) of natural, horizontal confined tracks. Measurements of Dpar are in μm. For some samples, no AFT length data is reported due to low spontaneous track densities
and/or a low number of suitable grains. Length data of sample SK-31 (in italic) is considered as a very low amount, and thermal historymodeling based on this data should be treatedwith
caution.

Sample n ρs
(±1σ)

Ns ρi
(±1σ)

Ni ρd
(±1σ)

Nd ρs/ρi
(±1σ)

P
(χ2)

t (ζ) ± 1σ
(Ma)

t (c) ± 1σ
(Ma)

nl lm (±1σ)
(μm)

Dpar (±1σ)
(μm)

Kazakh West Junggar & Altyn-Emel Ranges
11-01 54 3.710 (0.105) 1240 1.576 (0.067) 562 3.227 (0.071) 2065 2.344 (0.119) 0.98 86.3 ± 5.1 81 ± 4 58 11.8 (1.8) 1.6 (0.2)
11-07 6 0.432 (0.078) 31 0.277 (0.062) 20 3.244 (0.071) 2076 1.544 (0.443) 0.95 57.3 ± 16.5 58 ± 16 − − −
11-09 28 0.775 (0.021) 1332 0.397 (0.015) 685 3.298 (0.072) 2110 2.031 (0.095) 0.77 76.5 ± 4.3 73 ± 3 100 14.1 (1.2) 3.0 (0.3)
11-11 56 0.637 (0.021) 918 0.347 (0.158) 483 3.309 (0.072) 2118 2.055 (0.116) 1.00 77.7 ± 5.0 72 ± 4 72 14.0 (1.1) 2.5 (0.3)
11-20 11 0.723 (0.042) 295 0.278 (0.026) 111 3.333 (0.072) 2133 2.579 (0.287) 0.95 98.0 ± 11.3 101 ± 11 − − −
SK-21 34 1.174 (0.036) 1064 0.455 (0.022) 414 3.105 (0.070) 1987 2.781 (0.161) 0.76 98.5 ± 6.5 91 ± 6 104 13.7 (1.2) 2.4 (0.4)

Trans-Ili, Sogeti & Zhetyzol Ranges
10-20 17 3.692 (0.096) 1498 1.269 (0.057) 500 3.187 (0.071) 2039 3.023 (0.157) 0.48 109.8 ± 6.6 108 ± 6 103 13.5 (1.1) 2.0 (0.3)
11-27 58 0.150 (0.007) 414 0.583 (0.014) 1709 3.345 (0.072) 2141 0.264 (0.014) 0.78 10.1 ± 0.6 9 ± 1 − − −
11-28 58 0.330 (0.011) 926 0.772 (0.016) 2265 3.356 (0.072) 2148 0.435 (0.017) 0.82 16.8 ± 0.8 16 ± 1 65 13.9 (1.5) 2.0 (0.2)
SK-05A 45 0.393 (0.017) 529 0.117 (0.009) 154 3.087 (0.070) 1976 3.653 (0.335) 0.99 128.3 ± 12.4 121 ± 11 − − −
SK-31 50 0.423 (0.011) 1410 0.189 (0.007) 645 3.120 (0.070) 1997 2.388 (0.114) 0.88 85.1 ± 4.8 78 ± 4 27 13.2 (1.5) 2.1 (0.3)
SK-32 41 0.504 (0.014) 1309 0.168 (0.008) 415 3.127 (0.070) 2002 3.383 (0.191) 1.00 120.4 ± 7.7 112 ± 6 40 13.8 (1.2) 1.7 (0.2)

NW Lake Balkhash
10-40 19 0.354 (0.022) 259 0.162 (0.016) 107 3.196 (0.071) 2045 2.469 (0.284) 0.97 90.0 ± 10.7 88 ± 10 − − −
10-42 6 1.625 (0.126) 167 0.803 (0.092) 77 3.216 (0.071) 2058 2.013 (0.277) 0.87 74.0 ± 10.4 80 ± 11 − − −
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each sample, weighted mean 206Pb/238U plots are shown in Fig. 5 as
well.

Three samples from the Altyn-Emel and Malaysari Ranges, located
at the southwestern part of the Kazakh West Junggar Mountains (SK-
17, SK-21, SK-22) and one from the Sogeti Range (SK-05A) yield
Carboniferous zircon crystallization ages (Figs. 5 and 6, Table 3). Sample
SK-05A exhibits two apparent age clusters (Fig. 5, Table 3). An older
weighted mean 206Pb/238U age of 351 ± 3 Ma (MSWD = 0.15) and a
younger weighted mean 206Pb/238U age of 332 ± 2 Ma (MSWD =
0.70). The older (ca. 350 Ma) age was exclusively obtained from zircon
cores, while the younger (ca. 331 Ma) age comes from zircon rims or
grains without any core–rim relationships. We suggest that the age of
332 ± 2 Ma corresponds to the zircon crystallization age of sample
SK-05A, while the older (ca. 350 Ma) zircons are inherited in the
~330 Ma magma.

The Tera–Wasserburg diagram for sample SK-17 displays three
apparent zircon U–Pb age populations (Fig. 5). The bulk of the measure-
ments (16 out of 25) yield a near-concordant weightedmean 206Pb/238U
age of 331 ± 2 Ma (MSWD = 0.17). In addition, seven analyses yield a
younger age of 311± 4Ma (MSWD=0.34) and two older zircon grains
were dated as ~350 Ma. No clear core–rim relationships or variations in
Th/U ratios were observed for this sample. The excellent correlation of
the older (ca. 350 Ma) zircons with the ages obtained for the zircon
cores in sample SK-05A (Fig. 5), likely indicate that the ca. 350 Ma age
corresponds to the age of zircon xenocrysts and that the ca. 330 Ma age
corresponds to the magma crystallization age. The younger ~310 Ma
analyses show more dispersion and may reflect partial Pb-loss during a
later event in combination with a small quantity of common Pb in the
grains. The Tera–Wasserburg diagram for sample SK-21 (Fig. 5) shows
some dispersion in 207Pb/206Pb ratios, however no clear core–rim corre-
lationswere observed to identify different zircon age populations. There-
fore, an overall weightedmean 206Pb/238U age of 341± 2Ma (MSWD=
0.79) was calculated and interpreted as the best estimate for the crystal-
lization age. For sample SK-22 only one clear age cluster was identified,
excluding one older xenocryst of ~363 Ma (Fig. 5). Although minor dis-
persion in 207Pb/206Pb was observed, a statistically acceptable weighted
mean 206Pb/238U age of 320 ± 2 Ma (MSWD = 0.13) was obtained
which is interpreted as the crystallization age for sample SK-22.
For the central part of the Kazakh West Junggar Range, consistent
early Permian zircon crystallization ages (~296–298Ma)were obtained
for samples 11-01, 11-07 and 11-20 (Figs. 5 and 6; Table 3). The Tera–
Wasserburg diagram for sample 11-01 shows a rather large dispersion
in both 206Pb/238U and 207Pb/206Pb. Given that no clear core–rim rela-
tions were observed, a weighted mean 206Pb/238U age of 298 ± 4 Ma
(MSWD = 3.1) was obtained as the preferred crystallization age. For
sample 11-07 a concordant ZUPb age of 297±2Mawasobtained.How-
ever, given the largeMSWD of 9.6, a weightedmean 206Pb/238U agewas
calculated which is identical to the concordant age but yields a much
smaller MSWD of 1.4. Sample 11-20 exhibits rather large dispersion in
207Pb/206Pb and yields a weighted mean 206Pb/238U age of 296 ± 2 Ma
(MSWD = 0.85). For sample 11-09, which was taken from the same
region, a younger (late Permian) ZUPb age was obtained. The Tera–
Wasserburg diagram (Fig. 5) shows rather large dispersion in both
206Pb/238U and 207Pb/206Pb. Therefore a weighted mean 206Pb/238U age
of 260±3Ma (MSWD=1.8)was calculated, interpreted as the crystal-
lization age.
4.2. Apatite fission-track data

AFT ages are reported as conventional zeta- and central-ages in
Table 4 and demonstrate their similarity within 1σ error (Galbraith,
1990; Hurford, 1990). In addition, all samples fulfill the chi-squared
test (N5%) and hence no indications exist for multiple apatite age popu-
lations. Therefore, only the zeta-ages will be reported in the following
sections and figures. All analyzed samples from the Kazakh West
Junggar, Malaysari and Altyn-Emel Ranges (11-01, 11-09, 11-11, 11-
20, SK-21) exhibit Late Cretaceous (~99–77 Ma) AFT ages, except
sample 11-07 which has an AFT age of 57 ± 17 Ma (Fig. 6, Table 4).
For the latter sample, only six grains could be counted, leading to a
less precise AFT age (Table 4). Samples 10-40 and 10-42, located NW
of the IBB, yield similar Late Cretaceous (~90–74 Ma) AFT ages (Fig. 6,
Table 4). From the Trans-Ili, Sogeti and Zhetyzhol Ranges, four samples
(SK-05A, SK-31, SK-32, 10-20) exhibit Cretaceous AFT ages, ranging
from ca. 128 to 85 Ma; whereas two samples (11-27 and 11-28) have
Miocene AFT ages (~17 and 10 Ma) (Fig. 6, Table 4).



Fig. 6. Schematic geological map of the Ili–Balkhash study area with indication of sample sites (black dots), ZUPb- and AFT-ages (in Ma, white squares), and AFT length–frequency histograms. Main faults after Campbell et al. (2013), Choulet et al.
(2011) and Delvaux et al. (2001). CKCF = Chon–Kemin–Chilik Fault zone, DNF = Dzhalair–Naiman Fault, NL = Nikolaev Line, TFF = Talas–Ferghana Fault.
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(b)

(a)

Fig. 7. Thermal historymodel results produced by HeFTy (Ketcham, 2005) for eight samples from (a) the KazakhWest Junggar and Altyn-Emel Ranges and (b) the Trans-Ili and Zhetyzol
Ranges. On the left: overviewof themodels shown as coolingpath envelopes based on “good” fits. On the right: individualmodel results for a representative example. Shown cooling paths
in gray correspond to “good” fits (acceptablefits are not shown). Time–temperature constraints are indicated as gray boxes. Track length distributions are shown as histograms. Black line
corresponds to the best fit. APAZ= Apatite Partial Annealing Zone; MTL =mean track length; GOF = goodness of fit. Calculated parameters based on 2SE uncertainties. Models for the
other six samples can be found in the Supplementary Fig. S2.
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Most length–frequency distributions exhibit relatively narrow to
slightly broader, more or less symmetrical to slightly negatively skewed
histograms with mean track lengths (lm) between 13.2 and 14.1 μm
(standard deviations between 1.1 and 1.5 μm) (Fig. 6, Table 4). Sample
11-01 from the West Junggar Range has a lower lm value, i.e. 11.8 μm,
and is also characterized by the broadest length distribution (standard
deviation of 1.8 μm; pointing to slow cooling through the APAZ)
and a mean Dpar value of 1.6 μm (±0.2), which is the lowest value
in this study (Fig. 6, Table 4). Apatite grains with relatively low
values of Dpar (≤1.75 μm; Carlson et al., 1999; Donelick et al., 2005)
are generally considered as fast-annealing, hence in agreement with
the observed shorter track lengths. Most of the modeled samples
(≥75%) however have apatite grains with Dpar values N 1.75 μm,
which are usually more resistant to annealing (Carlson et al., 1999;
Donelick et al., 2005).

In total, eight thermal history models (THMs) were generated using
the HeFTy software (Ketcham, 2005) based on samples with sufficient
to acceptable numbers of horizontal confined tracks, except for sample
SK-31 which has in fact an insufficient number of length data (n = 27).
However, modeling is also carried out for sample SK-31 for comparison
purposes seeing its similar trend. The THMs are grouped in Fig. 7 by re-
gional setting, resulting in four models for samples from the Kazakh
West Junggar–Altyn-Emel Ranges (11-01, 11-09, 11-11 and SK-21) and
four models for samples from the Trans-Ili–Zhetyzhol Ranges (10-20,
11-28, SK-31, SK-32). Generally, caution is needed when interpreting
the THMs, because the model results are poorly constrained at tempera-
tures outside the PAZ. For the Kazakh West Junggar–Altyn-Emel Ranges
(Fig. 7a), the four THMs indicate a well-defined phase of rapid cooling
during the Late Cretaceous (~100–70 Ma). This Cretaceous cooling
seems to start slightly earlier (~150–120 Ma) for samples SK-21 and
11-01 based on the THMs. After this relatively rapid cooling event, a
stable to very slow cooling phase during the Paleogene is observed in
all four models. Finally, around the Paleogene–Neogene boundary,
cooling rates seem to increase slightly, bringing the samples to ambient
surface conditions.

THMs for samples SK-32 (Trans-Ili Range) and 10-20 (Zhetyzol
Range) show a clear Early tomiddle Cretaceous cooling phase, followed
by a stable period from the Late Cretaceous through the early Cenozoic
(Fig. 7b). A renewed, late Cenozoic cooling eventmight be present in the
THM of sample 10-20, starting around 20–15 Ma. The THM for sample
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Fig. 8.Overviewof the obtained ages by ZUPb and AFT dating and some representative thermal historymodels for the sampled basement ranges in SEKazakhstan. The ZUPb crystallization
ages can be related to a transition period from subduction of the Junggar–Balkhash (JB) Ocean to collisional and post-collisional magmatism. The supposed driving forces for the late
Mesozoic and Cenozoic exhumation of the basement are believed to be related to far-field accretion–collisions events, which are schematically shown as gray vertical bars: the Mesozoic
Cimmerian collisions (Qiangtang, Lhasa, Karakoram-Pamir) and Cenozoic India-Eurasia collision.

427E. De Pelsmaeker et al. / Tectonophysics 662 (2015) 416–433
SK-31 (Trans-Ili Range) show a main cooling phase in the Mesozoic as
well, but the cooling paths are less constrained and span the whole
Jurassic–Cretaceous epochs. A late Cenozoic renewed cooling is not
clearly visible in the THM of the latter sample. In contrast, in the THM
of sample 11-28 (AFT age of 17 Ma) from the Trans-Ili Range as well, a
pronounced late Cenozoic cooling phase is obviously present since ±
20 Ma which brought the sample to ambient surface conditions, effec-
tively exhuming a deeper paleo-crustal level (Fig. 7b).

5. Discussion

5.1. Zircon U–Pb data

The four analyzed magmatic samples from the Altyn-Emel,
Malaysari and Sogeti Ranges (SK-05A, SK-17, SK-21, SK-22) exhibit Car-
boniferous zircon crystallization ages between ~341–311 Ma (Figs. 5, 6
and 8). Slightly older zircon grains and zircon cores of ~350 Ma are
interpreted as xenocrysts in the ~341–311 Ma magma. The other four
granitoid samples (11-01, 11-07, 11-09, 11-20) from the central Kazakh
West Junggar Range reveal Permian near-concordant ZUPb ages, of
which three of them have consistent early Permian ages (~298–
296 Ma) and one yields a late Permian age of 260 ± 3 Ma (Figs. 5, 6
and 8).

Previously obtained ZUPb ages for the Ili–Balkhash basement in SE
Kazakhstan are rather limited, but Chen et al. (2012) reported three
phases of pluton intrusions (335 ± 2 Ma, 308 ± 10 Ma, 297 ± 3
Ma)based on zircon SHRIMP U–Pb geochronology of skarn-related
granitoids in the Sayak ore field of the Ili–Balkhash area. According to
Shen et al. (2013a) two periods of ore formation in the Kazakh North
Balkhash and Chinese West Junggar occurred during the late Paleozoic.
A Carboniferous (328–312Ma) porphyry Cumetallogenic event is relat-
ed to calc-alkaline arc magmatism whilst early Permian (306–289 Ma)
greisen W–Mo metallogenic deposits are associated with alkaline
magmatism in a collisional to post-collisional context (Shen et al.,
2013a). Also Chen et al. (2010, 2014) confirmed that late Paleozoic felsic
magmatism occurred mainly during the late Carboniferous to earliest
early Permian in that region. Generally, Carboniferous arc magmatism
can be related to the subduction of the Junggar–Balkhash Ocean,
which resulted in the formation of the Balkhash–Ili (BY) magmatic
belt in SE Kazakhstan (Heinhorst et al., 2000; Korobkin and Buslov,
2011; Levashova et al., 2012; Xiao et al., 2010) (Fig. 3). This subduction
zone was responsible for the formation of an extensive Late Devonian–
early Permian magmatic belt, of which remnants can be found in
East Kazakhstan, West Junggar and the Chinese northern Tien Shan
(Charvet et al., 2007; Choulet et al., 2011, 2012, 2013; Filippova et al.,
2001; Kröner et al., 2008; Tang et al., 2010; Wilhem et al., 2012;
Windley et al., 2007; Xiao et al., 2010, 2013; Zhao and He, 2013).
In the Chinese West Junggar, most late Paleozoic plutons range in
age from 360 to 280 Ma (with a peak between 340 and 300 Ma)
based on zircon U–Pb ages from Gao et al. (2014), Guo et al. (2010),
Han et al. (2006), Li et al. (2014), Tang et al. (2010), Wei et al. (2011)
and Zhu et al. (2007). In that region, calc-alkaline arcmagmatism (char-
acterized mainly by I-type granites) dominated around ~380–305 Ma
(e.g. Choulet et al., 2011, 2012, 2013; G. Yang et al., 2014; Geng et al.,
2011; Shen et al., 2013b; Tang et al., 2010; Yin et al., 2010, 2013; Zhou
et al., 2008). The Carboniferous (~350–311 Ma) crystallization ages
obtained in this study for the Kazakh West Junggar and neighboring
mountain ranges, are likely related to this arc magmatism. The com-
bined effect of oceanic closure and oroclinal bending resulted in the
continuous reorientationof themagmatic belt and buckling of the active
margin (Abrajevitch et al., 2008; Choulet et al., 2012, 2013; Levashova
et al., 2012; Wilhem et al., 2012). Contemporaneous local extension
at the periphery of the Kazakhstan Orocline resulted in the creation of
small transtensional sedimentary basins, and is likely a flexural re-
sponse of the oroclinal bending process (Abrajevitch et al., 2008). An
example is the Chu-(Sarysu) Basin in SE Kazakhstan which accommo-
dated more than 6 km of Devonian to Permian continental and
shallow-marine sedimentary deposits (Abrajevitch et al., 2008 and ref-
erences therein) (Fig. 3a).

By the early Permian, the Junggar–Balkhash Ocean was almost en-
tirely closed (Choulet et al., 2012; Feng et al., 1989; Wilhem et al.,
2012; Windley et al., 2007). During the Permian, the geodynamic
setting changed to a (post-) collisional environment and the area was
affected by large-scale deformation and strike-slip faulting (e.g.
Abrajevitch et al., 2008; Buslov et al., 2003b; Choulet et al., 2011, 2012,
2013; Korobkin and Buslov, 2011; Levashova et al., 2012; Van der Voo
et al., 2006; Wang et al., 2007). The Talas–Ferghana Fault (TFF;
Rolland et al., 2013), the Irtysh Shear Zone (ISZ) (Buslov et al., 2004;
Glorie et al., 2012b) and the Chingiz–Alakol–North Tien Shan shear
zone (CANTF; Choulet et al., 2011) are important examples of such
strike-slip systems near our study area (Figs. 1 and 2). Deformation
along the CANTF shear zone took place around 290–240 Ma, leading
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to a displacement of 490 km ± 250 km (Choulet et al., 2011). In the
Chinese North Tien Shan, a transition from calc-alkaline arc magmatism
to alkaline intraplate anorogenic (or post-collisional) magmatism oc-
curred during the early–middle Permian (B. Wang et al., 2009). In the
Chinese West Junggar, transition from a Carboniferous subduction–
accretion setting to a Permian post-accretion setting transpired around
305–300 Ma (Choulet et al., 2012, 2013; Gao et al., 2014; Geng et al.,
2009, 2011; Tang et al., 2010; Yin et al., 2013; Zhou et al., 2008).
Between ~300–250 Ma, alkaline magmatism and A-type granites
dominated with minor calc-alkaline and I-type granites in an overall
post-collisional settingwithmajor strike-slip deformation and associat-
ed extensional–transtensional tectonics (Chen and Jahn, 2004; Choulet
et al., 2011, 2012, 2013; Tang et al., 2010; Zhang et al., 2008; Zhou
et al., 2008). Alternatively, several researchers invoke the possibility
of coeval plume magmatism in the Permian (e.g. Dobretsov, 2011;
Korobkin and Buslov, 2011). Novikov (2013) reports two Permian
orogenic episodes for the Chinese West Junggar, based on evidences
from the sedimentary record. A first episode took place around 290–
275 Ma and a second phase around 265–255 Ma. These episodes are
in agreement with the overall timing of collisional to post-collisional
magmatism and can potentially be correlated to the early (~298–
296 Ma) and late (~260 Ma) Permian ZUPb ages for the Kazakh West
Junggar basement from this study. Also Kröner et al. (2008) and Shen
et al. (2013a) reported the existence of Permian anorogenic, alkaline
magmatism in East Kazakhstan.

In the broader Tien Shan and Altai regions, late Paleozoic granitoid
intrusives are widespread as well. In the Kyrgyz Tien Shan and Chinese
Central–South Tien Shan, widespread late Carboniferous–Permian colli-
sional and post-collisional intrusions are reported by e.g. Biske et al.
(2013), De Grave et al. (2013), Dumitru et al. (2001), Glorie et al.
(2010, 2011a), Han et al. (2010), Konopelko et al. (2007), Liu et al.
(2014), Ren et al. (2011) and Seltmann et al. (2011). In the southern
Siberian Altai region, (post-) collisional intrusives are dated as late
Carboniferous–early Permian (Glorie et al., 2011a). In the Chinese
Altai, Tong et al. (2014) argued that post-collisional Permian intrusives
were mostly emplaced during the 287–267 Ma interval. Generally,
these intrusions are related to the closure of the Turkestan and Ob-
Zaisan Oceans at the southeastern and northwestern margin of the
Kazakhstan paleocontinent respectively (Fig. 3b–c), leading to the late
Permian final amalgamation of the ancestral CAOB (Filippova et al.,
2001; Wilhem et al., 2012; Windley et al., 2007).

5.2. AFT data

The predominantly Cretaceous AFT cooling ages (Figs. 6 and 8)
and THMs (Fig. 7) for the Ili–Balkhash basement samples in this study
(excluding samples 11-27 and 11-28 from the Trans-Ili Range) can be
explained in terms of episodic exhumation and associated basement
cooling. Our results will be placed in a broader thermo-tectonic frame-
work based on available data from studies of e.g. Bullen et al. (2001),
De Grave et al. (2011a, 2013), Glorie et al. (2010), Macaulay et al.
(2014) for the northern Kyrgyz Tien Shan; Dumitru et al. (2001),
Jolivet et al. (2010), Hendrix et al. (1992, 1994), Q. Wang et al. (2009)
for the Chinese Central and Northern Tien Shan; De Grave et al. (2007,
2008, 2011b), De Grave and Van den haute (2002); Glorie et al.
(2012a), Yuan et al. (2006) for the southern Altai mountains. These
studies already demonstrate the existence of several reactivation pe-
riods after the final amalgamation of the ancestral CAOB in the Permian.
Based on the relative consistent two-stage cooling history of our AFT
dated samples (Figs. 7 and 8), the thermal history of the Ili–Balkhash
basement can be generally summarized as: distinctive cooling during
the late Mesozoic, followed by a slow cooling period from the latest
Mesozoic through the Paleogene. A third stage of late Oligocene–early
Miocene coolingmight be present in some of the THMs, but is only out-
spoken in sample 11-28. Each of these stages will be discussed in the
subsequent sections.
5.2.1. Late Mesozoic reactivation
In the Tien Shan, the oldest reported AFT ages are Triassic–Early

Jurassic, but Late Jurassic and Cretaceous ages compile the bulk of the
available AFT data set (De Grave et al., 2013 and references therein;
Glorie and De Grave, in press). For the northern Kazakh Tien Shan, De
Grave et al. (2013) reported Late Cretaceous and Neogene AFT ages for
the Trans-Ili Range, and Late Jurassic–Early Cretaceous ages for the
Zhetyzol Range. In the northern Kyrgyz Tien Shan, Early Cretaceous
AFT ages are characteristic for the central Kungey Range, while many
Early to Late Cretaceous AFT ages were obtained for the Terskey Range
(De Grave et al., 2013;Macaulay et al., 2014; Sobel et al., 2006). Further-
more, in and around the Chinese part of the Ili Basin, Cretaceous AFT
ages are reported by Jolivet et al. (2010) and north of Lake Balkhash
(in the Sayak ore field) Late Cretaceous AFT ages are reported by Chen
et al. (2012). Hence, the AFT age results from this study are consistent
with the aforementioned previous studies, with Early Cretaceous and
Miocene ages for the Trans-Ili and Sogeti Ranges, Early Cretaceous
ages for the Zhetyzol Range and Late Cretaceous to early Paleocene
ages for the Kazakh West Junggar Range and the region NW of Lake
Balkhash (Fig. 6). Despite the consistent Cretaceous ages, it remains dif-
ficult to make well-defined regional clusters of related AFT age data. In
general, the somewhat younger Late Cretaceous to early Paleocene
ages (~99 to 57 Ma) found in and around the Kazakh West Junggar
Mountains and NW of Lake Balkhash indicate that the basement there
exhumedmore rapidly (i.e. deeper paleo-levels are now exposed) com-
pared to the Sogeti and Zhetyzhol Ranges more to the south, which are
characterized by older Early Cretaceous AFT ages (~128 to 110 Ma).

The predominantly Cretaceous AFT ages and THMs for the Ili–
Balkhash basement generally point to a late Mesozoic cooling episode
associatedwith basement denudation. For the Kazakh–Kyrgyz northern
Tien Shan, earlier published data already demonstrated the existence
of Mesozoic cooling/denudation periods. A Middle Jurassic to Early Cre-
taceous cooling phase is identified in the Zhetyzol and Kungey Ranges,
while for the Trans-Ili and Terskey Ranges a Late Cretaceous cooling
phase is recognized (De Grave et al., 2013). In contrast, Macaulay et al.
(2014) only identified an Early Jurassic cooling event (200–150 Ma) in
the mountain ranges south of Issyk-Kul (including the Terskey Range).
In the Chinese Central Tien Shan, Hendrix et al. (1992) reported three
main Mesozoic cooling episodes, namely in the latest Triassic, latest
Jurassic and Late Cretaceous. Dumitru et al. (2001) and Q. Wang et al.
(2009) also identified a late Mesozoic cooling episode for the Chinese
Central Tien Shan, while Jolivet et al. (2010) reported a broad early
Permian to Middle Jurassic cooling period followed by a shorter cooling
pulse around the Late Cretaceous–Paleogene (65–60 Ma). This Late
Cretaceous–Paleogene pulse is mostly characterized by localized uplift
along major strike-slip faults south of the Chinese part of the Ili Basin
(Jolivet et al., 2010). Also Li et al. (2008, 2014) reported a Cretaceous
cooling event based on AFT and apatite (U–Th)/He ages ofWest Junggar
basement rocks. Generally, these Mesozoic cooling phases in the Tien
Shan are usually interpreted as far-field effects of Mesozoic collisions
at the southern Eurasian margin (e.g. De Grave et al., 2007, 2013;
Dumitru et al., 2001; Hendrix et al., 1992; Li et al., 2014; Q. Wang
et al., 2009). Progressive closure of the Paleo-Tethys Ocean and subse-
quent collisions of the Cimmerian blocks are believed to be responsible
for the various cooling and denudation episodes in southern Central
Asia during the Mesozoic (collision of the Qiangtang block in the Late
Triassic, the Lhasa block in the Late Jurassic–Early Cretaceous, the
Karakoram block and the Kohistan–Dras arc in the Late Cretaceous;
e.g. Golonka, 2004; Kapp et al., 2003; Metcalfe, 2013; Roger et al.,
2010). In addition, far-field effects of the MOOB to the NE of the study
area during the Jurassic–Cretaceous cannot be excluded, although its
extent and influence is at present highly contested (e.g. Jolivet et al.,
2010, 2013a, 2013b; Metelkin et al., 2010; Wilhem et al., 2012 and ref-
erences therein). In the southern Altai Mountains, several AFT studies
point to a Late Jurassic–Cretaceous basement cooling event, which is
generally linked to both the Mongol–Okhotsk and the Cimmerian
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Orogeny during the Mesozoic (Cogné et al., 2005; De Grave et al., 2007,
2008; Glorie et al., 2012a, 2012b; Halim et al., 1998; Yuan et al., 2006).
However, most authors favor the Mongol–Okhotsk Orogeny and subse-
quent collapse as themain driving force for the Late Jurassic–Cretaceous
cooling and denudation in the Altai, given themore proximal location of
the Altai to the Mongol–Okhotsk collision zone. The widespread
Cretaceous AFT ages and late Mesozoic cooling episode obtained for
the Ili–Balkhash basement ranges are hence compatible with previous
thermo-tectonic studies in the adjoining area, and are interpreted in
the same context, mainly as far-field effects of the Cimmerian collisions
at the southern Eurasian margin and possibly also of the Mongol–
Okhotsk Orogeny in SE Siberia during the Jurassic–Cretaceous (Choulet
et al., 2013; De Grave et al., 2007, 2013; Dumitru et al., 2001; Hendrix
et al., 1992; Jolivet et al., 2013b) (Fig. 8). The variation in timing of
the late Mesozoic cooling (and AFT ages) can be attributed to distinct
tectonic movements and differences in exhumation rate and intensity
between particular basement blocks.

In the Issyk-Kul Basin, the Mesozoic sedimentary record contains a
few hundred meters of Upper Triassic–Jurassic sediments and minor
Cretaceous deposits (Cobbold et al., 1994), while in the southern
Junggar Basin, the Mesozoic sedimentary pile is thicker and ends with
Cretaceous coarse clastic sediments (Allen et al., 1995; Hendrix et al.,
1992; Jolivet et al., 2010; Wang et al., 2013; Yang et al., 2015). Unfortu-
nately, in the IBB, the Mesozoic sedimentary record is relatively poorly
known, making direct correlation between the Mesozoic exhumation
history and the resulting sediment supply not straightforward. How-
ever, the clear presence of Jurassic–Cretaceous sediments in the nearby
area is consistent with the interpretation of late Mesozoic basement
denudation. A lot of studies demonstrate that Mesozoic deformation
in the Tien Shan and Altai was periodical (e.g. Dumitru et al., 2001;
Glorie et al., 2011b, 2012b; Hendrix et al., 1992; Jolivet et al., 2010;
Yang et al., 2015). For example, Choulet et al. (2013) correlatedMesozo-
ic episodes of strike-slip faulting and coarse-grained detrital sedimenta-
tion in the South Junggar Basin with rotational movements between
Kazakhstan, Junggar, Tarim and Siberia, which can be seen as effects of
the Cimmerian collisions at the southern Eurasian margin. Therefore,
theMesozoic Tien Shan and Altai were probably characterized by local-
ized, differential uplifted ranges and intervening basins. Because of the
non-uniform and complex nature of the reactivation, direct correlation
between the distant tectonic forces, the timing and distribution of the
intracontinental deformation revealed by e.g. AFT dating and the sedi-
ment record is not always clear. Discrepancies between the sedimento-
logical record and low-temperature thermochronological data in the
Mesozoic are described by Jolivet et al. (2010) for the Chinese IIi
Basin, and by Jolivet et al. (2013b) and Vincent and Allen (2001) for
the Junggar Basin. Also, Jolivet et al. (in press) demonstrate that the
link between tectonic uplift and the sediment record is often not
straightforward, and can be considerablymodified by climate variations
as in the case of the Upper Jurassic–Lower Cretaceous alluvial fan
deposits of the Kalaza Formation for example.

5.2.2. Late Cretaceous–Paleogene tectonic stability
A slow cooling period from the latest Mesozoic through the Paleo-

gene is clearly present in most THMs (Fig. 7), but some caution is need-
ed to interpret this slow cooling phase because it often takes place at
temperatures just outside the PAZ where the sensitivity of the model
decreases. However, such a slow cooling period is also recognized in
the thermochronological data from the northern Kyrgyz Tien Shan
(Bullen et al., 2001, 2003; De Grave et al., 2013; Glorie et al., 2010;
Macaulay et al., 2013, 2014) and southern Altai (De Grave and Van
den haute, 2002; De Grave et al., 2008; Yuan et al., 2006).

Evidence for this tectonic stable period can also be found in the sed-
imentary record. In the IBB, the most complete sedimentary section is
located south of the AktauMountains, situated southwest of the Kazakh
West Junggar Range (Figs. 2 and 4). In this region, Cenozoic deposits rest
unconformable on Upper Cretaceous sedimentary rocks (Lucas et al.,
2000 and references therein). After the deposition of scattered Creta-
ceous sediments in the IBB and adjoining basins, a regionally extensive
peneplain developed. Remnants of these flat erosional surfaces can be
found in the Tien Shan and Altai (Allen et al., 2001; De Grave and Van
den haute, 2002; Sobel et al., 2006 and references therein). In the IBB,
sedimentation resumed during the late Eocene–Oligocene, and became
widespread since the early Miocene (Kober et al., 2013; Lucas et al.,
1997, 2000). During the late Eocene–early Miocene the deposits were
mainly fluvio-lacustrine in origin and reflect distal, low-energy sedi-
mentary environments (Kober et al., 2013; Lucas et al., 1997, 2000).
Comparable to the IBB, the adjacent Chu Basin contains ±6 km of
Cenozoic sediments, resting on Cretaceous deposits (Bullen et al., 2001
and references therein). The relative thin Cretaceous–Paleogene strata
probably represent low-energy environment sediments, whereas a
transition to more fluvial–alluvial sedimentary settings progressed dur-
ing the Miocene (Bullen et al., 2001). In the Junggar Basin, also limited
erosion and associated sedimentation took place during the Paleogene
(Wang et al., 2001). Hence, the near lack of sedimentary deposits during
the Paleogene in the IBB and adjoining basins is in agreement with the
slow basement cooling episode derived from our AFT data.

5.2.3. Late Cenozoic reactivation
A late Cenozoic cooling phasemight be present in some of the THMs,

but is only clearly outspoken in themodel of sample 11-28 (Fig. 7). Very
precise timing of this cooling phase is difficult because most samples
were almost at near-surface temperatures at that time, where the
sensitivity of the AFT method is decreasing. Therefore, this event is
less outspoken as compared to the late Mesozoic cooling. For some
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samples (e.g. SK-32, Fig. 7) late Cenozoic cooling is lacking because
these samples were already brought to ambient surface conditions by
the late Mesozoic–early Cenozoic. However, the late Cenozoic cooling
event is obviously most pronounced in samples 11-27 and 11-28 from
the Trans-Ili Range, which reveal Miocene AFT ages (respectively 10.1
(±0.6) and 16.8 (±0.8)Ma) (Figs. 6 and 8, Table 4). The THMof sample
11-28 shows a distinct cooling-exhumation phase from below the APAZ
to ambient surface conditions during the late Cenozoic (Figs. 7 and 8).
Such a late Cenozoic cooling phase is widely recognized in the Tien
Shan and reflects the onset ofmodernmountain building and associated
basement denudation related to the ongoing indentation of the Indian
plate into Eurasia. Although some major structures in the Tien Shan
have been reactivated since the early Eocene (e.g. Glorie et al., 2011b),
the building of the modern Tien Shan is generally believed to have
started in the Oligocene–early Miocene, and exhumation was wide-
spread from the Miocene onwards (e.g. Bullen et al., 2001, 2003;
Buslov et al., 2008; De Grave et al., 2013; Jolivet et al., 2010; Macaulay
et al., 2013, 2014; Sobel and Dumitru, 1997; Sobel et al., 2006; Yu
et al., 2014). For example, Bullen et al. (2001) reported AFT ages
between 20 and 10 Ma for the Kyrgyz Range, in the northern Kyrgyz
Tien Shan. Also De Grave et al. (2013) and Macaulay et al. (2014)
confirmed that in the Kyrgyz northern Tien Shan increased exhumation
occurred between 15 and 5 Ma, and that the mountain ranges south of
the Issyk Kul Basin deformed out-of-sequence, related to inherited
structural weak zones. Magnetostratigraphic studies also underscore
that the onset of the development of the modern Tien Shan initiated
during the Miocene (Charreau et al., 2006, 2009). In the Altai region,
late Cenozoic reactivation seems to start in the Miocene, with clear
intensification in the Pliocene, and reflects in an analogous manner
the initiation of the construction of the modern Altai Mountains (De
Grave and Van den haute, 2002; Vassallo et al., 2007; Yuan et al., 2006).

After a period of minor sedimentation during the Paleogene, coarser
clastic and thicker sedimentary piles are recognized since the Mio-
Pliocene in the Junggar, Issyk-Kul and Chu basins (Cobbold et al., 1993;
De Grave et al., 2013; Q. Wang et al., 2009; Wang et al., 2001). Likewise,
in the IBB, sedimentation became more widespread since the Neogene
(Kober et al., 2013; Lucas et al., 1997, 2000). During the middle Miocene,
a large lake/playa system existed in the center of the IBB (Kober et al.,
2013). Up to then, sedimentation in the IBB was accompanied by local
normal faulting. These normal faults became reactivated as reverse or
strike-slip faults since the middle–late Miocene (Kober et al., 2013).
Since the Plio–Pleistocene, coarser detrital sediments are deposited in
the IBB (Kober et al., 2013; Lucas et al., 1997, 2000). Our AFT results are
in agreement with these findings and confirm that more shortening
and deformation took place in the IBB since the Miocene.

A topographic profile from Almaty (SE Kazakhstan) to Cholpon-Ata
(NE Kyrgyzstan), crosscutting the Trans-Ili and Kungey Ranges, is
given in Fig. 9. AFT data shown for this transect is based partly on sam-
ples fromDeGrave et al. (2013) (ALMA03-1/2/3, TS-04, TS-06 to TS-12),
and partly on samples from this study (11-27, 11-28). The ALMA03-1/2/
3 samples at the northern side of the Trans-Ili Range show a normal
age–elevation relationship, with AFT ages ranging from 71 to 23 Ma.
Samples TS-06 to TS-12 at the southern flank of the Kungey Range
also show a normal age–elevation relationship, but AFT ages now
range from 147 to 116 Ma (De Grave et al., 2013). This age-offset
between the two groups of samples is probably linked to the existence
of active E–W oriented faults (Abdrakhmatov et al., 2002; Buslov et al.,
2003a; Delvaux et al., 2001, 2013; Selander et al., 2012; Torizin et al.,
2009) (Figs. 2, 6 and 9). Samples 11-27 and 11-28 – with Miocene AFT
ages – are located close to the Trans-Ili or Zailisky Fault (ZF), which
merge with the Chon–Kemin–Chilik Fault (CKCF) at depth (Delvaux
et al., 2001; Torizin et al., 2009). Based on the seismic density map of
Torizin et al. (2009), most seismicity in the Trans-Ili Range occurs
around the Trans-Ili Fault (ZF), followed by the Karakunug–Almaty
Fault (KAF) and the CKCF respectively, whereas south of the CKCF,
in the Kungey Range, the seismic activity is less outspoken (Fig. 9).
The ALMA03-1/2/3, 11-27 and 11-28 samples are located in this high
seismicity zone, close to where the largest seismic events of the region
occurred (Verny earthquake in 1887 (M = 7.3); Kemin earthquake in
1911 (M = 8.2)) (Abdrakhmatov et al., 2002; Delvaux et al., 2001;
Torizin et al., 2009) (Fig. 9). Hence, late Cenozoic fault activity is proba-
bly responsible for the rapid and intense basement denudation,
resulting inMioceneAFT ages in close vicinity of the ZF andKAF systems
(Fig. 9). In comparison, in the Terskey Range, south of the Issyk-Kul
Basin, a few similar late Oligocene to Miocene AFT ages are reported
often in the vicinity of fault zones (De Grave et al., 2013; Macaulay
et al., 2014). Furthermore, in the Chinese and southern Kyrgyz Tien
Shan, similar Neogene AFT ages were documented in the vicinity of
major E–W trending fault systems (e.g. Dumitru et al., 2001; Glorie
et al., 2011b;W. Yang et al., 2014). Hence, denudation in the late Ceno-
zoic seems to be at least partially controlled by fault activity.
6. Conclusions

Based on the geo- and thermochronological results, the follow-
ing conclusions can be drawn for the Ili–Balkhash basement of SE
Kazakhstan:

(1) Eight magmatic basement samples reveal zircon U–Pb crystalli-
zation ages between ~350 and 260Ma, spanning the Carbonifer-
ous to Permian time period. The Carboniferous (~350–320 Ma)
crystallization ages can be related to subduction of the
Junggar–Balkhash Ocean and subsequent building of the
Balkhash–Ili magmatic belt, whereas the early (~296–297 Ma)
and late (~258 Ma) Permian ages probably correspond to colli-
sional and post-collisional magmatism in the context of the late
Paleozoic final amalgamation of the ancestral Central Asian Oro-
genic Belt.

(2) Apatite fission track ages and thermal history models fit into the
thermochronological framework of the adjoining Tien Shan and
Altai regions. Since the final amalgamation of the ancestral
CAOB in the Permian, the study area was subjected to late Meso-
zoic and late Cenozoic reactivation periods.

(3) The predominantly Cretaceous AFT ages and thermal history
models of the Ili–Balkhash basement point to a distinct late
Mesozoic cooling period associated with basement denudation.
The Cimmerian collisions at the southern Eurasian margin and
possibly the Mongol–Okhotsk Orogeny in SE Siberia are envis-
aged as main tectonic drives for this late Mesozoic reactivation
period. The variation in timing of the late Mesozoic cooling
paths (andAFT ages) can be attributed to distinct tectonicmove-
ments and differences in exhumation rate between particular
basement blocks.

(4) After a late Mesozoic reactivation episode, a tectonic stable peri-
od is recognized in the AFT thermal historymodels (slow cooling
paths) during the Paleogene. This is in agreementwith the nearly
lack of sedimentary deposits and development of a regional
peneplain during the Paleogene in SE Kazakhstan and adjoining
regions.

(5) Late Cenozoic AFT cooling started around the late Oligocene–
Miocene and reflects the onset of modern mountain building
and denudation in SE Kazakhstan. Along the active Trans-Ili
Fault in the Kazakh Tien Shan, two Miocene AFT ages (~17 and
10 Ma) were obtained. This modern denudation is also
expressed by the marked change towards coarser clastic sedi-
mentary deposits in the area since the middle Miocene and can
be explained as a far-field effect of the ongoing indentation of
the Indian plate into Eurasia.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tecto.2015.06.014.
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