10 research outputs found

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.Additional co-authors: Jolanda Verspagen, Maria van Herk, Maria G. Antoniou, Nikoletta Tsiarta, Valerie McCarthy, Victor C. Perello, Danielle Machado-Vieira, Alinne Gurjao de Oliveira, Dubravka Špoljaric Maronic, Filip Stevic, Tanja Žuna Pfeiffer, Itana Bokan Vucelic, Petar Žutinic, Marija Gligora Udovic, Anđelka Plenkovic-Moraj, Ludek Blaha, Rodan Geriš, Markéta Frankova, Kirsten Seestern Christoffersen, Trine Perlt Warming, Tõnu Feldmann, Alo Laas, Kristel Panksep, Lea Tuvikene, Kersti Kangro, Judita Koreiviene, Jurate Karosiene, Jurate Kasperoviciene, Ksenija Savadova-Ratkus, Irma Vitonyte, Kerstin Häggqvist, Pauliina Salmi, Lauri Arvola, Karl Rothhaupt, Christos Avagianos, Triantafyllos Kaloudis, Spyros Gkelis, Manthos Panou, Theodoros Triantis, Sevasti-Kiriaki Zervou, Anastasia Hiskia, Ulrike Obertegger, Adriano Boscaini, Giovanna Flaim, Nico Salmaso, Leonardo Cerasino, Sigrid Haande, Birger Skjelbred, Magdalena Grabowska, Maciej Karpowicz, Damian Chmura, Lidia Nawrocka, Justyna Kobos, Hanna Mazur-Marzec, Pablo Alcaraz-Parraga, Elżbieta Wilk-Wozniak, Wojciech Krzton, Edward Walusiak, Ilona Gagala-Borowska, Joana Mankiewicz-Boczek, Magdalena Toporowska, Barbara Pawlik-Skowronska, Michał Niedzwiecki, Wojciech Pęczuła, Agnieszka Napiorkowska-Krzebietke, Julita Dunalska, Justyna Sienska, Daniel Szymanski, Marek Kruk, Agnieszka Budzynska, Ryszard Goldyn, Anna Kozak, Joanna Rosinska, Elżbieta Szeląg-Wasielewska, Piotr Domek, Natalia Jakubowska-Krepska, Kinga Kwasizur, Beata Messyasz, Aleksandra Pełechata, Mariusz Pełechaty, Mikolaj Kokocinski, Beata Madrecka-Witkowska, Iwona Kostrzewska-Szlakowska, Magdalena Frąk, Agnieszka Bankowska-Sobczak, Michał Wasilewicz, Agnieszka Ochocka, Agnieszka Pasztaleniec, Iwona Jasser, Ana M. Antao-Geraldes, Manel Leira, Vitor Vasconcelos, Joao Morais, Micaela Vale, Pedro M. Raposeiro, Vítor Gonçalves, Boris Aleksovski, Svetislav Krstic, Hana Nemova, Iveta Drastichova, Lucia Chomova, Spela Remec-Rekar, Tina Elersek, Lars-Anders Hansson, Pablo Urrutia-Cordero, Andrea G. Bravo, Moritz Buck, William Colom-Montero, Kristiina Mustonen, Don Pierson, Yang Yang, Christine Edwards, Hannah Cromie, Jordi Delgado-Martín, David García, Jose Luís Cereijo, Joan Gomà, Mari Carmen Trapote, Teresa Vegas-Vilarrúbia, Biel Obrador, Ana García-Murcia, Monserrat Real, Elvira Romans, Jordi Noguero-Ribes, David Parreño Duque, Elísabeth Fernandez-Moran, Barbara Úbeda, José Angel Galvez, Núria Catalan, Carmen Pérez-Martínez, Eloísa Ramos-Rodríguez, Carmen Cillero-Castro, Enrique Moreno-Ostos, José María Blanco, Valeriano Rodríguez, Jorge Juan Montes-Pérez, Roberto L. Palomino, Estela Rodríguez-Pérez, Armand Hernandez, Rafael Carballeira, Antonio Camacho, Antonio Picazo, Carlos Rochera, Anna C. Santamans, Carmen Ferriol, Susana Romo, Juan Miguel Soria, Arda Özen, Tünay Karan, Nilsun Demir, Meryem Beklioglu, Nur Filiz, Eti Levi, Ugur Iskin, Gizem Bezirci, Ülkü Nihan Tavsanoglu, Kemal Çelik, Koray Ozhan, Nusret Karakaya, Mehmet Ali Turan Koçer, Mete Yilmaz, Faruk Maras¸lıoglu, Özden Fakioglu, Elif Neyran Soylu, Meral Apaydın Yagcı, Sakir Çınar, Kadir Çapkın, Abdulkadir Yagcı, Mehmet Cesur, Fuat Bilgin, Cafer Bulut, Rahmi Uysal, Köker Latife, Reyhan Akçaalan, Meriç Albay, Mehmet Tahir Alp, Korhan Özkan, Tugba Ongun Sevindik, Hatice Tunca, Burçin Önem, Hans Paerl, Cayelan C. Carey, Bastiaan W. Ibeling

    Colonial nesting waterbirds as vectors of nutrients to Lake Lesser Prespa (Greece)

    No full text
    The nutrients imported by breeding waterbirds should be considered when identifying the main sources of nutrient input to lakes. Lake Lesser Prespa (Greece), including the adjacent Vromolimni pond, hosts numerous protected waterbirds that nest in densely populated colonies across the reedbeds. The accelerated eutrophication of the lake in recent years has been of increasing concern. In addition to likely large sources of nutrients (i.e., anthropogenic activities, especially agriculture), nutrient input via waterbird excrement may further trigger eutrophication. We estimated the annual phosphorus (P) and nitrogen (N) input by the most abundant colonial-nesting waterbirds (great white pelican, Dalmatian pelican, great cormorant, and pygmy cormorant) into the lake and investigated their influence on water and sediment quality. Near the waterbird colonies, soluble nutrient concentrations in the lake sediments were higher, and chlorophyll measurements indicated higher algal growth near these sites in summer. Stable isotope analysis suggests that near the colonies, waterbirds are responsible for nutrient loadings that affect the lake sediment. The estimated N and P nutrient input into the lake by both pelican and cormorant species is at least 1243 and 1649 kg/yr, respectively. On a landscape scale, this level of loading could be of minor importance for the lake because N and P can reach 32.8 (SD 9.3) and 38.9 (5.8) mg/m2 per year, respectively. Locally, however, this level of loading might induce cyanobacterial blooms, illustrated by the analysis of isolated Vromolimni pond near the lake. Our findings emphasize the likely importance of nutrient loading by waterbirds for the lake system.</p

    Effects of guanotrophication and warming on the abundance of green algae, cyanobacteria and microcystins in Lake Lesser Prespa, Greece

    No full text
    Lake Lesser Prespa in Greece is a vital breeding habitat for the Dalmatian and Great White Pelican and a shelter for numerous rare and endemic species. However, eutrophication processes are distressing the lake system and the outbreaks of cyanobacterial blooms during the warm months may pose a threat to aquatic organisms due to the presence of microcystins (MCs). In this study we hypothesize that nutrients (eutrophication), nutrient-rich pelican droppings (guanotrophication) and warming (climate change) can affect the algal growth and MCs production in the water layer of Lake Lesser Prespa. Seston collected from three lake sites was incubated at ambient (20°C) and high (30°C) temperature with or without the addition of nutrients (nitrogen (N), phosphorus (P)), or pelican droppings. Results showed increased chlorophyll-a at higher temperature (30°C). N addition yielded higher chlorophyll-a levels than the non-treated water or when only P was added. The addition of both N and P as well as the addition of pelican dropping resulted in the highest chlorophyll-a at both temperatures. Notably, in the dropping-treatments, cyanobacteria and MCs were promoted while changes were evoked in the relative contribution of toxic MC-variants. Guanotrophication may thus influence the cyanobacterial dynamics and most likely their toxicity profile at Lesser Prespa

    Trophic relationships in Dutch reservoirs recently invaded by Ponto-Caspian species: insights from fish trends and stable isotope analysis

    Get PDF
    Contains fulltext : 204335.pdf (publisher's version ) (Open Access)01 januari 2019280 p

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.Peer reviewe

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    No full text
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains

    Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    No full text
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment
    corecore