259 research outputs found

    Csokonai könyvtår. Forråsok : (Régi kortårsaink)

    Get PDF
    E kötet Verseghy Ferenc drĂĄma mƱnemĂ©be tartozĂł Ă­rĂĄsait fogja össze, s nyĂșjtja ĂĄt az olvasĂłknak. A sokrĂ©tƱ szerzƑi Ă©letmƱ e szelete mindeddig kevĂ©s figyelmet kapott. Jelen kiadvĂĄny – illeszkedvĂ©n a sorozat hagyomĂĄnyaihoz – arra vĂĄllalkozik, hogy e ma rĂ©szint kevĂ©ssĂ© olvasott, rĂ©szint nem ismert darabokat ismerttĂ© tegye. A szövegek egy rĂ©sze csupĂĄn egykorĂș nyomtatvĂĄnykĂ©nt Ă©rhetƑ el, mĂĄs rĂ©szĂŒk kisebb közlemĂ©nyekben lĂĄtott napvilĂĄgot, vagy eddig kĂ©zirattĂĄrban pihent. A tĂ©mĂĄjukban Ă©s mƱfajukban rendkĂ­vĂŒl vĂĄltozatos mƱveket olvasva nemcsak a recepciĂł ĂĄltal fƑkĂ©nt költƑkĂ©nt, nyelvĂ©szkĂ©nt, esztĂ©takĂ©nt szĂĄmon tartott szerzƑ Ășj arcĂĄt ismerhetjĂŒk meg, hanem egyszersmind Ășj ismeretekkel gazdagodhatunk a rĂ©gi szĂĄzadfordulĂł szĂ­nhĂĄztörtĂ©netĂ©rƑl: nĂ©pszeerƱ szĂ­npadi szerzƑkrƑl, kedvelt tĂ©mĂĄkrĂłl Ă©s mƱfajokrĂłl, zenĂ©rƑl, tĂĄncrĂłl, balettekrƑl, a szĂ­npadra ĂĄllĂłkrĂłl, s a nĂ©zƑteret megtöltƑ publikumrĂłl.NYOMTATÁSBAN MEGJELENT MĆ°VEK A’ szerelem gyermeke - 9 A’ le-bilintsezett PromĂ©theus - 127 A’ formentĂ©rai remete - 167 ; EduĂĄrd SkĂłcziĂĄban, avvagy eggy szökevĂ©nynek az Ă©jszakĂĄja - 231 ; Magyaroknak hƱsĂ©ge Ă©s nemzeti lelke – Die Treue und der Nazionalgeist der Ungarn - 288 ; KÉZIRATBAN MARADT MĆ°VEK ÉS TÖREDÉKEK - Az essƑbƱl a’ csurgĂł alĂĄ - 321 ; Falusi InderkedĂ©sek avvagy a’ prĂłbĂĄra tett szeretƑk - 337 ; Castor Ă©s Pollux, avvagy a’ TestvĂ©rszeretet - 339 ; Zotmund, a’ MajthĂ©nyi fƑ nemes famĂ­liĂĄnak törzsöke, avvagy a’ Posonyi OstromlĂĄs - 341 ; SzĂ©tsi MĂĄria a’ murĂĄnyi vĂĄrban [szĂ­nlap] - 349 ; Jegyzetek - BevezetĂ©s - 353 ; Jegyzetek az egyes mƱvekhez - 374 ; A’ szerelem gyermeke - 374 ; A’ le-bilintsezett PromĂ©theus - 395 ; A’ formentĂ©rai remete - 405 ; EduĂĄrd SkĂłcziĂĄban, avvagy eggy szökevĂ©nynek az Ă©jszakĂĄja - 435 ; Magyaroknak hƱsĂ©ge Ă©s nemzeti lelke – Die Treue und der Nazionalgeist der Ungarn - 440 ; Az essƑbƱl a’ csurgĂł alĂĄ - 466 ; Falusi InderkedĂ©sek avvagy a’ prĂłbĂĄra tett szeretƑk - 469 ; Castor Ă©s Pollux, avvagy a’ TestvĂ©rszeretet 476 ; Zotmund, a’ MajthĂ©nyi fƑ nemes famĂ­liĂĄnak törzsöke, avvagy a’ Posonyi OstromlĂĄs - 479 ; SzĂ©tsi MĂĄria a’ murĂĄnyi vĂĄrban [szĂ­nlap] - 483 ; RövidĂ­tĂ©sek - 492 ; BibliogrĂĄfia - 493 ; NĂ©vmutatĂł - 51

    Csokonai könyvtår. Forråsok : (Régi kortårsaink)

    Get PDF
    Jelen forrĂĄskiadĂĄs Verseghy Ferenc 1804 Ă©s 1813 között keletkezett szĂ©pprĂłzai mƱveit tartalmazza. A Martinovics-összeeskĂŒvĂ©sben valĂł rĂ©szvĂ©tele miatt elĂ­tĂ©lt Verseghy Ă©letĂ©ben a szabadulĂĄst követƑ tĂ­z esztendƑ az ĂștkeresĂ©s, a bizonytalan lĂ©tĂĄllapot lekĂŒzdĂ©sĂ©Ă©rt folytatott tevĂ©kenysĂ©g, az anyagi biztonsĂĄg megteremtĂ©sĂ©Ă©rt valĂł erƑfeszĂ­tĂ©s összefĂŒggĂ©sĂ©ben alakult. Szorosra fƱzve kiadĂłi Ă©rdekkapcsolatait sajtĂł alĂĄ rendezƑkĂ©nt, korrektorkĂ©nt, fordĂ­tĂłkĂ©nt közönsĂ©gigĂ©nyt kiszolgĂĄlĂł kiadvĂĄnyok megjelentetĂ©sĂ©ben vĂĄllalt aktĂ­v szerepet, e tevĂ©kenysĂ©g rĂ©szekĂ©nt publikĂĄlta a jelen kötetben összegyƱjtött szĂ©pprĂłzai munkĂĄit is. E körĂŒlmĂ©nyekre alapozva a fƑszövegekhez tĂĄrsulĂł kĂ­sĂ©rƑtanulmĂĄny Ă©s jegyzetapparĂĄtus alapvetƑ feladatĂĄnak tekinti a közreadott mƱvek keletkezĂ©störtĂ©netĂ©nek felvĂĄzolĂĄsĂĄt, Verseghy forrĂĄsainak, valamint a szövegmagyarĂĄzatokon keresztĂŒl a szerteĂĄgazĂł hivatkozĂĄs- Ă©s utalĂĄsrendszerĂ©nek azonosĂ­tĂĄsĂĄt. Verseghy szĂ©pprĂłzai mƱveit azok az egyĂ©ni intenciĂłk emelik ki a hasonlĂł szövegek sokasĂĄgĂĄbĂłl, amelyeket a magyarĂ­tĂĄsok sorĂĄn vĂ©gez. Verseghy nem minden esetben elĂ©gszik meg a forrĂĄsszövegek pontos fordĂ­tĂĄsĂĄval, több esetben tudatos megfontolĂĄsoktĂłl vezĂ©relve vĂĄltoztat meg bizonyos rĂ©szeket, gyakran korĂĄbbi mƱveibƑl szĂĄrmazĂł, szĂł szerinti ĂĄtvĂ©teleket illesztve a szövegbe. Mindezek hozadĂ©ka pedig abban mĂ©rhetƑ le, hogy Verseghy prĂłzai szövegei nem csupĂĄn szĂ©pirodalmi szempontbĂłl tarthatnak szĂĄmot Ă©rdeklƑdĂ©sre: vĂĄltoztatĂĄsai folytĂĄn ugyanis a szĂĄmos köz-, mƱvelƑdĂ©s- Ă©s tudomĂĄnytörtĂ©neti adalĂ©kkal gazdagĂ­tott szövegek a korabeli MagyarorszĂĄgra vonatkozĂłan hordoznak magukban Ă©rtĂ©kes ismereteket. A kötet hat nagyobb terjedelmƱ szöveg Ă©s hĂĄrom töredĂ©k közzĂ©tĂ©telĂ©vel az utĂłbbi Ă©vekben megĂ©lĂ©nkĂŒlt Verseghy-filolĂłgia Ă©s Verseghy-kutatĂĄs eredmĂ©nyeihez kĂ­vĂĄn csatlakozni, a szĂ©pprĂłzai szövegekre irĂĄnyulĂł kutatĂĄs jelenlegi ĂĄllĂĄsĂĄt felmutatva, bĂ­zvĂĄn abban, hogy e forrĂĄskiadĂĄs tovĂĄbbi megközelĂ­tĂ©sek kiindulĂłpontjĂĄvĂĄ vĂĄlhat.SZÖVEGEK Kolomposi Szarvas Gergely Ășrnak vĂ­g Ă©lete Ă©s nevetsĂ©ges vĂ©lekedĂ©sei [I.]...... 9; Kolomposi Szarvas Gergely Ășrnak vĂ­g Ă©lete Ă©s nevetsĂ©ges vĂ©lekedĂ©sei [II.]...... 53; Kolomposi Szarvas Gergely Ășrnak vĂ­g Ă©lete Ă©s nevetsĂ©ges vĂ©lekedĂ©sei [III.]...... 101; GrĂłf Kaczajfalvi LĂĄszlĂł, avvagy a’ termĂ©szetes ember...... 113; BĂĄrĂł KĂŒlneki GilmĂ©ta Kisasszony, Ă©s Aranypataki György...... 247; Vak BĂ©la, a’ magyarok kirĂĄllya...... 363; AlmarĂ©k erdĂ©lyi herczeg, avvagy a’ szebeni erdƑ...... 407; [Siroki Mariska Ă©s Viszneki LĂĄszlĂł]...... 455; FÜGGELÉK Az Ă©n kedves Uram BĂĄtyĂĄmnak SĂĄndi GĂĄbor FƑstrĂĄzsamester Ășrnak; Élete Ă©s VĂ©lekedĂ©sei...... 465; JEGYZETEK BevezetĂ©s. „MulatsĂĄgot akart Ƒ a magyaroknak szerezni”. A Verseghy-prĂłza kontextusairĂłl...... 469; Jegyzetek az egyes mƱvekhez...... 485; Kolomposi Szarvas Gergely Ășrnak vĂ­g Ă©lete Ă©s nevetsĂ©ges vĂ©lekedĂ©sei [I–III.]...... 485; GrĂłf Kaczajfalvi LĂĄszlĂł, avvagy a’ termĂ©szetes ember...... 509; BĂĄrĂł KĂŒlneki GilmĂ©ta Kisasszony, Ă©s Aranypataki György...... 522; Vak BĂ©la, a’ magyarok kirĂĄllya...... 536; AlmarĂ©k erdĂ©lyi herczeg, avvagy a’ szebeni erdƑ...... 544; [Siroki Mariska Ă©s Viszneki LĂĄszlĂł]...... 555; Az Ă©n kedves Uram BĂĄtyĂĄmnak SĂĄndi GĂĄbor FƑstrĂĄzsamester Ășrnak Élete Ă©s VĂ©lekedĂ©sei...... 558; RövidĂ­tĂ©sjegyzĂ©k...... 559; BibliogrĂĄfia...... 561; NĂ©vmutatĂł...... 57

    Improving permafrost physics in the coupled Canadian Land Surface Scheme (v.3.6.2) and Canadian Terrestrial Ecosystem Model (v.2.1) (CLASS-CTEM)

    Get PDF
    The Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model (CLASS-CTEM) together form the land surface component of the Canadian Earth System Model (CanESM). Here, we investigate the impact of changes to CLASS-CTEM that are designed to improve the simulation of permafrost physics. Overall, 18 tests were performed, including changing the model configuration (number and depth of ground layers, different soil permeable depth datasets, adding a surface moss layer), and investigating alternative parameterizations of soil hydrology, soil thermal conductivity, and snow properties. To evaluate these changes, CLASS-CTEM outputs were compared to 1570 active layer thickness (ALT) measurements from 97 observation sites that are part of the Global Terrestrial Network fo

    Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada-US border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada?U.S. border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada

    Get PDF
    Northern peatlands contain enormous quantities of organic carbon within a few meters of the atmosphere and play a significant role in the planetary carbon balance. We have developed a new, process-oriented model of the contemporary carbon balance of northern peatlands, the Peatland Carbon Simulator (PCARS). Components of PCARS are (1) vascular and nonvascular plant photosynthesis and respiration, net aboveground and belowground production, and litterfall; (2) aerobic and anaerobic decomposition of peat; (3) production, oxidation, and emission of methane; and (4) dissolved organic carbon loss with drainage water. PCARS has an hourly time step and requires air and soil temperatures, incoming radiation, water table depth, and horizontal drainage as drivers. Simulations predict a complete peatland C balance for one season to several years. A 3-year simulation was conducted for Mer Bleue Bog, near Ottawa, Ontario, and results were compared with multiyear eddy covariance tower CO2 flux and ancillary measurements from the site. Seasonal patterns and the general magnitude of net ecosystem exchange of CO2 were similar for PCARS and the tower data, though PCARS was generally biased toward net ecosystem respiration (i.e., carbon loss). Gross photosynthesis rates (calculated directly in PCARS, empirically inferred from tower data) were in good accord, so the discrepancy between model and measurement was likely related to autotrophic and/or heterotrophic respiration. Modeled and measured methane emission rates were quite low. PCARS has been designed to link with the Canadian Land Surface Scheme (CLASS) land surface model and a global climate model (GCM) to examine climate-peatland carbon feedbacks at regional scales in future analyses

    Dominance of grain size impacts on seasonal snow albedo at deforested sites in New Hampshire

    Get PDF
    Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate

    Evaluation of the Algorithms and Parameterizations for Ground Thawing and Freezing Simulation in Permafrost Regions

    Get PDF
    Ground thawing and freezing depths (GTFDs) strongly influence the hydrology and energy balances of permafrost regions. Current methods to simulate GTFD differ in algorithm type, soil parameterization, representation of latent heat, and unfrozen water content. In this study, five algorithms (one semiempirical, two analytical, and two numerical), three soil thermal conductivity parameterizations, and three unfrozen water parameterizations were evaluated against detailed field measurements at four field sites in Canada’s discontinuous permafrost region. Key findings include: (1) de Vries’ parameterization is recommended to determine the thermal conductivity in permafrost soils; (2) the three unfrozen water parameterization methods exhibited little difference in terms of GTFD simulations, yet the segmented linear function is the simplest to be implemented; (3) the semiempirical algorithm reasonably simulates thawing at permafrost sites and freezing at seasonal frost sites with site-specific calibration. However, large interannual and intersite variations in calibration coefficients limit its applicability for dynamic analysis; (4) when driven by surface forcing, analytical algorithms performed marginally better than the semiempirical algorithm. The inclusion of bottom forcing improved analytical algorithm performance, yet their results were still poor compared with those achieved by numerical algorithms; (5) when supplied with the optimal inputs, soil parameterizations, and model configurations, the numerical algorithm with latent heat treated as an apparent heat capacity achieved the best GTFD simulations among all algorithms at all sites. Replacing the observed bottom temperature with a zero heat flux boundary condition did not significantly reduce simulation accuracy, while assuming a saturated profile caused large errors at several sites
    • 

    corecore