14 research outputs found

    Methanotrophic potential of Dutch canal wall biofilms is driven by Methylomonadaceae

    Get PDF
    Global urbanization of waterways over the past millennium has influenced microbial communities in these aquatic ecosystems. Increased nutrient inputs have turned most urban waters into net sources of the greenhouse gases carbon dioxide (CO2) and methane (CH4). Here, canal walls of five Dutch cities were studied for their biofilm CH4 oxidation potential, alongside field observations of water chemistry, and CO2 and CH4 emissions. Three cities showed canal wall biofilms with relatively high biological CH4 oxidation potential up to 0.48 mmol gDW-1 d-1, whereas the other two cities showed no oxidation potential. Salinity was identified as the main driver of biofilm bacterial community composition. Crenothrix and Methyloglobulus methanotrophs were observed in CH4-oxidizing biofilms. We show that microbial oxidation in canal biofilms is widespread and is likely driven by the same taxa found across cities with distinctly different canal water chemistry. The oxidation potential of the biofilms was not correlated with the amount of CH4 emitted but was related to the presence or absence of methanotrophs in the biofilms. This was controlled by whether there was enough CH4 present to sustain a methanotrophic community. These results demonstrate that canal wall biofilms can directly contribute to the mitigation of greenhouse gases from urban canals

    Phenotypic and Functional Properties of Helios+ Regulatory T Cells

    Get PDF
    Helios, an Ikaros family transcription factor, is preferentially expressed at the mRNA and protein level in regulatory T cells. Helios expression previously appeared to be restricted to thymic-derived Treg. Consistent with recent data, we show here that Helios expression is inducible in vitro under certain conditions. To understand phenotypic and functional differences between Helios+ and Helios− Treg, we profiled cell-surface markers of FoxP3+ Treg using unmanipulated splenocytes. We found that CD103 and GITR are expressed at high levels on a subset of Helios+ Treg and that a Helios+ Treg population could be significantly enriched by FACS sorting using these two markers. Quantitative real-time PCR (qPCR) analysis revealed increased TGF-β message in Helios+ Treg, consistent with the possibility that this population possesses enhanced regulatory potential. In tumor-bearing mice, we found that Helios+ Treg were relatively over-represented in the tumor-mass, and BrdU studies showed that, in vivo, Helios+ Treg proliferated more than Helios− Treg. We hypothesized that Helios-enriched Treg might exert increased suppressive effects. Using in vitro suppression assays, we show that Treg function correlates with the absolute number of Helios+ cells in culture. Taken together, these data show that Helios+ Treg represent a functional subset with associated CD103 and GITR expression

    HOIL-1L Interacting Protein (HOIP) as an NF-κB Regulating Component of the CD40 Signaling Complex

    Get PDF
    The tumor necrosis factor receptor (TNFR) superfamily mediates signals critical for regulation of the immune system. One family member, CD40, is important for the efficient activation of antibody-producing B cells and other antigen-presenting cells. The molecules and mechanisms that mediate CD40 signaling are only partially characterized. Proteins known to interact with the cytoplasmic domain of CD40 include members of the TNF receptor-associated factor (TRAF) family, which regulate signaling and serve as links to other signaling molecules. To identify additional proteins important for CD40 signaling, we used a combined stimulation/immunoprecipitation procedure to isolate CD40 signaling complexes from B cells and characterized the associated proteins by mass spectrometry. In addition to known CD40-interacting proteins, we detected SMAC/DIABLO, HTRA2/Omi, and HOIP/RNF31/PAUL/ZIBRA. We found that these previously unknown CD40-interacting partners were recruited in a TRAF2-dependent manner. HOIP is a ubiquitin ligase capable of mediating NF-κB activation through the ubiquitin-dependent activation of IKKγ. We found that a mutant HOIP molecule engineered to lack ubiquitin ligase activity inhibited the CD40-mediated activation of NF-κB. Together, our results demonstrate a powerful approach for the identification of signaling molecules associated with cell surface receptors and indicate an important role for the ubiquitin ligase activity of HOIP in proximal CD40 signaling

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Atm reactivation reverses ataxia telangiectasia phenotypes in vivo

    No full text
    Abstract Hereditary deficiencies in DNA damage signaling are invariably associated with cancer predisposition, immunodeficiency, radiation sensitivity, gonadal abnormalities, premature aging, and tissue degeneration. ATM kinase has been established as a central player in DNA double-strand break repair and its deficiency causes ataxia telangiectasia, a rare, multi-system disease with no cure. So ATM represents a highly attractive target for the development of novel types of gene therapy or transplantation strategies. Atm tamoxifen-inducible mouse models were generated to explore whether Atm reconstitution is able to restore Atm function in an Atm-deficient background. Body weight, immunodeficiency, spermatogenesis, and radioresistance were recovered in transgenic mice within 1 month from Atm induction. Notably, life span was doubled after Atm restoration, mice were protected from thymoma and no cerebellar defects were observed. Atm signaling was functional after DNA damage in vivo and in vitro. In summary, we propose a new Atm mouse model to investigate novel therapeutic strategies for ATM activation in ataxia telangiectasia disease

    XIAP discriminates between type I and type II FAS-induced apoptosis

    No full text
    FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions

    Novel, gross chromosomal alterations involving PTEN cooperate with allelic loss in prostate cancer

    No full text
    There is increasing evidence that multiple chromosomal rearrangements occur in prostate cancer. PTEN loss is considered to be a key event in prostate carcinogenesis but the mechanisms of loss remain to be fully elucidated. We hypothesised that gross rearrangements may exist that cause disruption of the PTEN gene in the absence of genomic deletion. We therefore designed a novel fluorescence in situ hybridisation (FISH) assay with probes overlying regions 3' and 5' of PTEN and a third probe overlying the gene. We aimed to identify both genomic deletions and gross rearrangements of PTEN that would be overlooked by previously reported single-probe FISH assays. We proceeded to evaluate a tissue microarray with radical prostatectomy and trans-urethral resection of the prostate specimens from 187 patients. We identified PTEN genomic loss in 45/150 (30%) radical prostatectomy patients and 16/37 (43%) trans-urethral resection of the prostate patients. Importantly, our assay detected novel chromosomal alterations in the PTEN gene (characterised by splitting of FISH signals) in 13 tumours (6.9% of all prostate cancers; 21% of PTEN-lost cancers). All PTEN-rearranged tumours had genomic loss at the other allele and had no expression of PTEN by immunohistochemistry. PTEN-rearranged tumours were significantly more likely to have an underlying ERG rearrangement. Our assay differentiated loss of the probe overlying PTEN in isolation or in combination with either one of or both the probes overlying the 3' and 5' regions. This gave an indication of the size of genomic loss and we observed considerable inter-tumoural heterogeneity in the extent of genomic loss in PTEN-lost tumours. In summary, gross rearrangements of the PTEN locus occur in prostate cancer and can be detected by a 'break-apart' FISH assay. This observation could explain the absence of PTEN protein expression in a subgroup of tumours previously classified as having heterozygous genomic loss using single-probe traditional FISH assays

    New mutations in the ATM gene and clinical data of 25 AT patients

    No full text
    Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar degeneration, immunodeficiency, oculocutaneous telangiectasias, chromosomal instability, radiosensitivity, and cancer predisposition. The gene mutated in the patients, ATM, encodes a member of the phosphatidylinositol 3-kinase family proteins. The ATM protein has a key role in the cellular response to DNA damage. Truncating and splice site mutations in ATM have been found in most patients with the classical AT phenotype. Here we report of our extensive ATM mutation screening on 25 AT patients from 19 families of different ethnic origin. Previously unknown mutations were identified in six patients including a new homozygous missense mutation, c.8110T > C (p.Cys2704Arg), in a severely affected patient. Comprehensive clinical data are presented for all patients described here along with data on ATM function generated by analysis of cell lines established from a subset of the patients
    corecore