224 research outputs found
Decreased levels of the gelsolin plasma isoform in patients with rheumatoid arthritis
Introduction Gelsolin is an intracellular actin-binding protein involved in cell shape changes, cell motility, and apoptosis. An extracellular gelsolin isoform, plasma gelsolin circulates in the blood of healthy individuals at a concentration of mg/L and has been suggested to be a key component of an extracellular actin-scavenging system during tissue damage. Levels of plasma gelsolin decrease during acute injury and inflammation, and administration of recombinant plasma gelsolin to animals improves outcomes following sepsis or burn injuries. In the present study, we investigated plasma gelsolin in patients with rheumatoid arthritis.Methods Circulating and intra-articular levels of plasma gelsolin were measured in 78 patients with rheumatoid arthritis using a functional (pyrene-actin nucleation) assay and compared with 62 age- and gender-matched healthy controls.Results Circulating plasma gelsolin levels were significantly lower in patients with rheumatoid arthritis compared with healthy controls ( versus mg/L, P = 0.0002). The patients' intra-articular plasma gelsolin levels were significantly lower than in the paired plasma samples ( versus mg/L, P = 0.0001). Actin was detected in the synovial fluids of all but four of the patients, and immunoprecipitation experiments identified gelsolin-actin complexes.Conclusions The plasma isoform of gelsolin is decreased in the plasma of patients with rheumatoid arthritis compared with healthy controls. The reduced plasma concentrations in combination with the presence of actin and gelsolin-actin complexes in synovial fluids suggest a local consumption of this potentially anti-inflammatory protein in the inflamed joint
Osteoporosis in experimental postmenopausal polyarthritis: the relative contributions of estrogen deficiency and inflammation
Generalized osteoporosis in postmenopausal rheumatoid arthritis (RA) is caused both by estrogen deficiency and by the inflammatory disease. The relative importance of each of these factors is unknown. The aim of this study was to establish a murine model of osteoporosis in postmenopausal RA, and to evaluate the relative importance and mechanisms of menopause and arthritis-related osteoporosis. To mimic postmenopausal RA, DBA/1 mice were ovariectomized, followed by the induction of type II collagen-induced arthritis. After the mice had been killed, paws were collected for histology, one femur for bone mineral density (BMD) and sera for analyses of markers of bone resorption (RatLaps; type I collagen cross-links, bone formation (osteocalcin) and cartilage destruction (cartilage oligomeric matrix protein), and for the evaluation of antigen-specific and innate immune responsiveness. Ovariectomized mice displayed more severe arthritis than sham-operated controls. At termination of the experiment, arthritic control mice and non-arthritic ovariectomized mice displayed trabecular bone losses of 26% and 22%, respectively. Ovariectomized mice with arthritis had as much as 58% decrease in trabecular BMD. Interestingly, cortical BMD was decreased by arthritis but was not affected by hormonal status. In addition, markers of bone resorption and cartilage destruction were increased in arthritic mice, whereas markers of bone formation were increased in ovariectomized mice. This study demonstrates that the loss of endogenous estrogen and inflammation contribute additively and equally to osteoporosis in experimental postmenopausal polyarthritis. Markers of bone remodeling and bone marrow lymphocyte phenotypes indicate different mechanisms for the development of osteoporosis caused by ovariectomy and arthritis in this model
Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice
Introduction Dichloroacetate (DCA) has been in clinical use for the treatment of lactacidosis and inherited mitochondrial disorders. It has potent anti-tumor effects both in vivo and in vitro, facilitating apoptosis and inhibiting proliferation. The proapoptotic and anti-proliferative properties of DCA prompted us to investigate the effects of this compound in arthritis. Methods In the present study, we used DCA to treat murine collagen type II (CII)-induced arthritis (CIA), an experimental model of rheumatoid arthritis. DBA/1 mice were treated with DCA given in drinking water. Results Mice treated with DCA displayed much slower onset of CIA and significantly lower severity (P less than 0.0001) and much lower frequency (36% in DCA group vs. 86% in control group) of arthritis. Also, cartilage and joint destruction was significantly decreased following DCA treatment (P = 0.005). Moreover, DCA prevented arthritis-induced cortical bone mineral loss. This clinical picture was also reflected by lower levels of anti-CII antibodies in DCA-treated versus control mice, indicating that DCA affected the humoral response. In contrast, DCA had no effect on T cell-or granulocyte-mediated responses. The beneficial effect of DCA was present in female DBA/1 mice only. This was due in part to the effect of estrogen, since ovariectomized mice did not benefit from DCA treatment to the same extent as sham-operated controls (day 30, 38.7% of ovarectomized mice had arthritis vs. only 3.4% in sham-operated group). Conclusion Our results indicate that DCA delays the onset and alleviates the progression of CIA in an estrogen-dependent manner
Mice Chronically Fed High-Fat Diet Have Increased Mortality and Disturbed Immune Response in Sepsis
BACKGROUND: Sepsis is a potentially deadly disease that often is caused by gram-positive bacteria, in particular Staphylococcus aureus (S. aureus). As there are few effective therapies for sepsis, increased basic knowledge about factors predisposing is needed. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study was to study the effect of Western diet on mortality induced by intravenous S. aureus inoculation and the immune functions before and after bacterial inoculation. Here we show that C57Bl/6 mice on high-fat diet (HFD) for 8 weeks, like genetically obese Ob/Ob mice on low-fat diet (LFD), have increased mortality during S. aureus-induced sepsis compared with LFD-fed C57Bl/6 controls. Bacterial load in the kidneys 5-7 days after inoculation was increased 10-fold in HFD-fed compared with LFD-fed mice. At that time, HFD-fed mice had increased serum levels and fat mRNA expression of the immune suppressing cytokines interleukin-1 receptor antagonist (IL-1Ra) and IL-10 compared with LFD-fed mice. In addition, HFD-fed mice had increased serum levels of the pro-inflammatory IL-1beta. Also, HFD-fed mice with and without infection had increased levels of macrophages in fat. The proportion and function of phagocytosing granulocytes, and the production of reactive oxygen species (ROS) by peritoneal lavage cells were decreased in HFD-fed compared with LFD-fed mice. CONCLUSIONS: Our findings imply that chronic HFD disturb several innate immune functions in mice, and impairs the ability to clear S. aureus and survive sepsis
Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.
Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable
variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However,
the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown.
Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse
model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J
mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa
clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait.
Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic
(SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and
was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1,
Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and
inflammatory processes.
Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored
to complement human studie
Leishmania donovani-induced expression of signal regulatory protein α on Kupffer cells enhances hepatic invariant NKT-cell activation
Signal regulatory protein α (SIRPα) and its cognate ligand CD47 have been documented to have a broad range of cellular functions in development and immunity. Here, we investigated the role of SIRPα–CD47 signalling in invariant NKT (iNKT) cell responses. We found that CD47 was required for the optimal production of IFN-γ from splenic iNKT cells following exposure to the αGalCer analogue PBS-57 and in vivo infection of mice with Leishmania donovani. Surprisingly, although SIRPα was undetectable in the liver of uninfected mice, the hepatic iNKT-cell response to infection was also impaired in CD47−/− mice. However, we found that SIRPα was rapidly induced on Kupffer cells following L. donovani infection, via a mechanism involving G-protein-coupled receptors. Thus, we describe a novel amplification pathway affecting cytokine production by hepatic iNKT cells, which may facilitate the breakdown of hepatic tolerance after infection
ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia
This work was supported by funds from the Wellcome Trust (098291/Z/12/Z and 101604/Z/13/Z) (S.N.) and the British Heart Foundation (FS/11/19/28761) (A.W.)
Myeloid-Specific Deletion of Mcl-1 Yields Severely Neutropenic Mice That Survive and Breed in Homozygous Form
Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic protein in Lyz2Cre/CreMcl1flox/flox (Mcl1ΔMyelo) mice leads to dramatic reduction of circulating and tissue neutrophil counts without affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1ΔMyelo mice appeared normally, and their survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1ΔMyelo mice were also able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of neutropenia was confirmed by the complete protection of Mcl1ΔMyelo mice from arthritis development in the K/B×N serum-transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita. Mcl1ΔMyelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 in MRP8-CreMcl1flox/flox (Mcl1ΔPMN) mice also led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1ΔMyelo mice indicate that severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the analysis of the role of neutrophils in health and disease
Staphylococcus aureus synthesizes adenosine to escape host immune responses
Staphylococcus aureus infects hospitalized or healthy individuals and represents the most frequent cause of bacteremia, treatment of which is complicated by the emergence of methicillin-resistant S. aureus. We examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall–anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homologue was identified in the anthrax pathogen, and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Collectively, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses
- …