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The Journal of Immunology

Myeloid-Specific Deletion of Mcl-1 Yields Severely
Neutropenic Mice That Survive and Breed in
Homozygous Form

Janka Zsófia Csepregi,*,†,1 Anita Orosz,*,†,1 Erik Zajta,‡ Orsolya Kása,*,†

Tamás Németh,*,† Edina Simon,*,† Szabina Fodor,x Katalin Csonka,‡ Balázs L. Barátki,{

Dorottya Kövesdi,{,‖ You-Wen He,# Attila Gácser,‡ and Attila Mócsai*,†

Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell

function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful

genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic

protein in Lyz2Cre/CreMcl1flox/flox (Mcl1DMyelo) mice leads to dramatic reduction of circulating and tissue neutrophil counts without

affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1DMyelo mice appeared normally, and their

survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1DMyelo mice were also

able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of

neutropenia was confirmed by the complete protection of Mcl1DMyelo mice from arthritis development in the K/B3N serum-

transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita.

Mcl1DMyelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective

clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 inMRP8-CreMcl1flox/flox (Mcl1DPMN) mice also

led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting

their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1DMyelo mice indicate that

severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the

analysis of the role of neutrophils in health and disease. The Journal of Immunology, 2018, 201: 3793–3803.

G
enetically manipulated mice lacking a certain hemato-
poietic lineage (1–11) have strongly contributed to our
understanding of immune and inflammatory processes in

health and disease. The best example is the deficiency of the re-
combination activating genes Rag1 or Rag2, which lack B and
T lymphocytes and, therefore, are widely used to test the role of
the adaptive immune response in in vivo biological processes (1).
Additional mutations result in the deficiency of B cells (2), T cell
subtypes (3, 4), NK-cells (4), eosinophils (7), basophils (8), mast
cells (9, 10), or certain macrophage lineages (11), allowing the
analysis of those lineages in the immune and inflammatory

process. The usefulness of such models is determined by the ex-
tent and selectivity of the deficiency of the given lineage as well as
general characteristics, such as the survival and breeding of the
mutant mice.
Neutrophils are the most abundant circulating leukocytes in

humans and a predominant leukocyte population in experimental
mice. Neutrophils are critically involved in the innate immune
response, but they also contribute to tissue damage upon inap-
propriate activation of the cells (12–15). There are a number of
mouse strains that show reduced numbers of neutrophils due
to mutations in the genes encoding the Gfi1 transcription factor
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(16–18), G-CSF (19), G-CSF receptor (20), or the Foxo3A tran-
scription factor (21). Unfortunately, all those models have sub-
stantial limitations, such as poor specificity (16, 17), partial
neutrophil deficiency, (18–21) or limited survival of the affected
animals (16, 17, 19, 20). In addition, although it is widely believed
that severe neutropenia is inconsistent with life, this has never
been appropriately tested in experimental mice.
Mcl-1 (myeloid cell leukemia 1) is an antiapoptotic member of

the Bcl-2 family protein present in various tissues (22, 23). We
have previously shown that Mcl-1 is required for the survival of
neutrophils (24), likely because these short-lived cells lack other
antiapoptotic Bcl-2 family members able to control the intrinsic
proapoptotic program of neutrophils (25). In contrast, the survival
of other myeloid cells, such as macrophages, does not rely on
Mcl-1 expression (24), likely because those cells also express
antiapoptotic proteins other than Mcl-1.
Given the critical role of Mcl-1 in neutrophil but not macrophage

survival, we hypothesized that myeloid-specific deletion of Mcl-1
would lead to selective loss of neutrophils but not of monocytes/
macrophages or nonmyeloid lineages. Indeed, Cre/lox–mediated
myeloid-specific deletion of Mcl-1 led to very severe neutropenia
without affecting other hematopoietic lineages. Surprisingly, the
survival and fertility of these mice was mostly normal, indicating
that mice are able to survive with very low circulating neutrophil
numbers. This mouse strain may be suitable for the analysis of the
role of neutrophils in various in vivo biological processes in health
and disease.

Materials and Methods
Animals

Mice carrying the Mcl1tm1Ywh (Mcl1flox) floxed allele of the Mcl-1–
encoding gene (24) were crossed to mice carrying the Lyz2tm1(cre)Ifo

(Lyz2Cre; also known as LysM-Cre) knock-in strain expressing the Cre recom-
binase in the entire myeloid compartment (26) to generate Lyz2Cre/CreMcl1flox/flox

mutants (referred to as Mcl1DMyelo mice). The mutations were mostly
maintained by breeding Mcl1DMyelo with Lyz2Cre/CreMcl1flox/+ mice,
yielding Mcl1DMyelo homozygous animals and Lyz2Cre/CreMcl1flox/+ litter-
mate controls. Several other breeding strategies (including breeding in the
Mcl1DMyelo homozygous form) were also used (see Results). To generate a
more neutrophil-specific Mcl-1 deletion, Mcl1flox/flox mice were crossed to
MRP8-Cre transgenic animals (27) to generate MRP8-CreMcl1flox/flox

(referred to as Mcl1DPMN) mice. G-CSF receptor–deficient (20)
(Csf3rtm1Link/tm1Link; Csf3r2/2) mice were purchased from The Jackson
Laboratory. The genotype of all mice was tested by allele-specific PCR.
All mice were on the C57BL/6 genetic background. Control C57BL/6
animals were obtained from our breeding colony.

Micewere kept in individually sterile ventilated cages (Tecniplast), either
in a specific pathogen-free facility or an adjacent conventional facility. The
conventional facility has historically been infected with murine hepatitis
virus, Theiler murine encephalomyelitis virus, and murine norovirus as well
as with Helicobacter, Entamoeba, Hexamastix, Syphacia obvelata, and
Mycoptes musculinus species. All experiments were approved by the
Animal Experimentation Review Board of Semmelweis University or the
University of Szeged. Mice of both genders at 2–6 mo of age were used for
the experiments.

Bone marrow chimeras were generated by i.v. injection of unfractionated
bone marrow cells into B6.SJL-Ptprca recipients carrying the CD45.1 allele
on the C57BL/6 background lethally irradiated by 11.5 Gy from a [137Cs]
source using a Gamma-Service Medical (Leipzig, Germany) D1 irradiator.
Four weeks after transplantation, peripheral blood samples were stained for
Ly6G and CD45.2 and analyzed by flow cytometry. Bone marrow chimeras
were used 4–10 wk after the transplantation.

Abs

The following Abs (all from BD Biosciences, except 7/4 from Abcam
and IgM from Jackson Immonoresearch) were used for flow cytometry:
CD3 (17A2), CD11b (M1/70), CD45R/B220 (RA3-6B2), CD45.2 (104),
Ly6C (AL-21), Ly6G (1A8), Siglec-F (E50-2440), Gr1 (RB6-8C5), 7/4
(ab53453), c-Kit (2B8), B220 (RA3-6B2), IgM (polyclonal, catalog no.
115-606-020), IgD (11-26c.2a), CD21 (7g6), and CD23 (B3B4).

Cell preparation, flow cytometry, and cytospin

Blood samples were obtained from tail vein incisions, washed, stained, and
then resuspended in BD Biosciences FACS lysing solution. Bone marrow
and spleen cell samples were obtained by flushing the bone marrow or
crushing the spleen through a 70-mm cell strainer, followed by RBC lysis
with eBioscience RBC Lysis Buffer, staining, and resuspension in PBS
containing 5% FBS. Samples were kept at 4˚C during the entire procedure.
Specified volumes were used throughout, allowing a precise determination
of absolute cell counts.

Flow cytometry was performed using a BD Biosciences FACSCalibur
and analyzed by FCS Express 6 (De Novo Software). The different leu-
kocyte populations were identified within their typical forward and side
scatter gates as follows: neutrophils as CD11b+Ly6G+Siglec-F2, mono-
cytes as CD11b+Ly6G–Siglec-F2, eosinophils as Ly6G2Siglec-F+, T cells
as CD3+, and B cells as B220+ cells. Blood monocyte subpopulations were
differentiated by Ly6C staining.

For cytospin assays, bone marrow cells were obtained by flushing the
bone marrow, followed by RBC lysis with eBioscience RBC Lysis Buffer.
Cell counts were adjusted and cytospined onto SuperFrost slides (Thermo
Fisher Scientific) for 5 min at room temperature using Shandon Cytospin 3
Cytocentrifuge cytospin equipment. After drying, slides were stained with
the May–Grünwald method and analyzed by a Leica DMI6000B inverted
microscope.

In vitro culture and PCR analysis of macrophages

Bone marrow cells were obtained by flushing the bone marrow. Cells were
washed and resuspended in a-MEM supplemented with 10% FBS, 1%
penicillin/streptomycin, 10 mM HEPES (pH 7.4), 1% L-glutamine, and
10 ng/ml recombinant murine M-CSF. Cells were plated on tissue culture–
treated plates and cultured for 3 d in a humidified CO2 incubator. Cells in
suspension were then collected, centrifuged, and resuspended in the above-
mentioned medium containing 40 ng/ml recombinant murine M-CSF. Four
days later, adherent cells were collected and prepared for flow cytometry
using the F4/80 marker or isolation of genomic DNA. For Mcl1 genomic
PCR analysis, the 59-GGT TCC CTG TCT CCT TAC TTA CTG TAF-39
forward primer was used along with the 59-TCG AGA AAA AGA TTT
AAC ATC GCC-39 reverse primer (Mcl1D allele; ∼600-bp product length)
or the 59-CTC CTA ACC ACT GTT CCT GAC ATC C-39 reverse primer
(Mcl1WT or Mcl1flox allele; ∼260- and 380-bp product length, respec-
tively). For Itgb2 (CD18) PCR analysis, the 59-GCC CAC ACT CAC TGC
TGC TTG-39 forward primer was used along with the 59-CCC GGC AAC
TGC TGA CTT TGT-39 reverse primer (Itgb2WT allele; ∼480-bp product
length).

Thioglycolate-induced peritonitis

Peritonitis was induced by i.p. injection of 1 ml 3% thioglycolate
(Liofilchem) or PBS. After 4 h, mice were euthanized, and the peritoneum
was flushed by 5 ml ice-cold PBS containing 5% FBS. The lavage samples
were washed, resuspended in PBS containing 5% FBS, and maintained at
4˚C until staining for flow cytometry.

Survival and fertility

An online database (specific pathogen-free facility) and hand-written re-
cords (conventional facility) were used for the analysis of the survival,
fertility, and breeding behavior of our mice. Data were analyzed using a
custom-made software. Body weight of a smaller cohort was measured once
weekly from the age of 2 wk.

K/B3N serum transfer arthritis

Serum from KRN transgene-positive (arthritic) K/B3N and transgene-
negative (nonarthritic) B3N mice was obtained as described previously
(28, 29). Arthritis was induced by i.p. injection of 300 ml K/B3N (ar-
thritic) or B3N (control) serum, followed by daily scoring of clinical signs
of arthritis and measurement of ankle thickness for 2 wk as described
previously (29–32).

Autoantibody-induced skin-blistering model

The murine model of human epidermolysis bullosa acquisita was triggered
by systemic administration of rabbit polyclonal Abs against type VII
collagen (CVII) as described previously (31–34). Twelve milligrams of
pathogenic IgG in PBS per mouse or PBS alone was injected s.c. under
isoflurane anesthesia every second day between 0 and 8 d (60 mg total IgG
per mouse). The disease onset and progression were followed by clinical
assessment every second day as described previously (31, 32, 34).
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In vivo infection models

Staphylococcus aureus strain ATCC25923 and Candida albicans strain
SC5314 originated from the Szeged Microbial Collection (World Federa-
tion of Culture Collections no. 987).

S. aureus was maintained on brain–heart infusion (BHI) agar and grown
overnight at 37˚C in liquid BHI medium prior to experiments. Mice were
infected i.p. with 2 3 107 or 1 3 107 S. aureus bacteria in 100 ml PBS per
mouse for survival assays and bacterial burden assessment, respectively.

C. albicans was maintained on yeast extract/peptone/dextrose (YPD)
agar and grown overnight at 30˚C in liquid YPD medium prior to exper-
iments. Mice were infected i.v. through the tail vein with 1 3 105 yeast
cells in 100 ml PBS per mouse.

Bacterial and fungal burdens were determined by a conventional CFU
counting method 12 h post infection. Kidneys, spleens, livers, and brains
were collected, weighed, and homogenized in sterile PBS. Blood was also
collected from the retro-orbital venous plexus. Peritoneal lavage was
collected by washing the peritoneum with 5 ml sterile PBS. Samples were
plated in serial dilutions on BHI or YPD agar plates and incubated for 1 d at
37˚C or for 2 d at 30˚C, respectively, followed by CFU counting.

Presentation of data and statistical analysis

Experiments were performed the indicated number of times. Bar graphs and
kinetic curves show mean and SEM of all mice or samples from the in-
dicated number of independent experiments. Tissue cell numbers were
calculated for the entire spleen, the entire peritoneum, or the bonemarrow of
both femurs and both humeri combined. Statistical analysis was performed
with StatSoft Statistica software. The analysis of blood, bone marrow, and
splenic leukocyte populations and bacterial or fungal CFU counts was
performed by Student t test. Peritonitis, arthritis, and dermatitis experi-
ments were analyzed by two-way factorial ANOVA. A Mann–Whitney U
test was used to analyze the body-weight curves. Survival studies were
analyzed by the Kaplan–Meier method and logrank statistics. A p value ,
0.05 was considered statistically significant.

Results
Myeloid-specific deletion of Mcl-1 leads to severe neutropenia

To test the effect of myeloid-specific deletion of Mcl-1, we have
generated Mcl1DMyelo mice, which leads to Cre-mediated deletion
of Mcl1 in the myeloid compartment. Control mice included wild
type C57BL/6 animals, Lyz2Cre/Cre or Mcl1flox/flox single-gene
mutants, or Lyz2Cre/CreMcl1flox/+ littermate controls.
Whereas the peripheral blood of wild type animals contained a

clear population of neutrophils (Ly6G+ cells with intermediate
forward scatter and high side scatter characteristics), this pop-
ulation was missing from Mcl1DMyelo mice (Fig. 1A, 1B). This
was in line with our previously reported experiments with these
animals (24, 35). Quantitative analysis (Fig. 1C) revealed that the
circulating neutrophil count in the Mcl1DMyelo mutants was re-
duced by 98.1% relative to wild type animals (p = 8.0 3 10223).
No signs of neutropenia were observed in mice carrying mutations
only in the Lyz2 or Mcl1 gene (Supplemental Fig. 1A). Severe
neutropenia was also confirmed by staining peripheral blood
neutrophils using the 7/4 or RB6-8C5 (Gr1) markers (Supplemental
Fig. 1C, 1D).

Specificity of the effect of the Mcl1DMyelo mutation

We next tested the effect of the Mcl1DMyelo mutation on other
leukocyte lineages. As shown in Fig. 1D and 1E, circulating
monocyte (CD11b+Ly6G2Siglec-F2; p = 0.96), eosinophil
(Siglec-F+Ly6G2; p = 0.49), and cell (B220+; p = 0.86) numbers
were normal, and T cell (CD3+) numbers were even moderately
elevated (p = 0.012) in Mcl1DMyelo mice. Analysis of Ly6C+

(“inflammatory”) and Ly6C2 (“patrolling”) monocyte subpop-
ulations within the CD11b+Ly6G2Siglec-F2 monocyte gate
(Fig. 1F, 1G) indicated normal numbers of Ly6C+ monocytes
(p = 0.73) and a moderate although statistically significant re-
duction of Ly6C2 monocyte counts (p = 0.0039). No substantial
differences in those lineages were observed when only the Lyz2 or

Mcl1 genes were mutated (Supplemental Fig. 1A, 1B). No changes
in RBC count or blood hemoglobin concentration was observed in
Mcl1DMyelo mice either (data not shown).

Analysis of tissue leukocytes and
in vitro–differentiated macrophages

We next tested the effect of the Mcl1DMyelo mutation on tissue
leukocyte numbers. As shown in Fig. 2A, the number of Ly6G+

neutrophils in the bone marrow was strongly reduced in the
Mcl1DMyelo animals (96% reduction; p = 1.1 3 1025). This is also
reflected in the strong reduction of the number of cells with
neutrophil-like donut-shaped nuclear morphology in cytospin
preparations of bone marrow cells (Supplemental Fig. 2A). More
detailed analysis of Ly6G expression (Supplemental Fig. 2B) in
the bone marrow has revealed that although the Ly6Ghigh pop-
ulation was practically absent in Mcl1DMyelo mice the Ly6Gmed/dim

populations were not reduced, suggesting that the Mcl1DMyelo muta-
tion does not eradicate the myeloid progenitor or early neutrophil
lineage cell compartment.
In contrast to neutrophils, no reduction of monocytes or T cells

could be observed inMcl1DMyelo mice (Fig. 2B; p = 0.20 and 0.48,
respectively). However, the number of bone marrow B cells was
clearly reduced (p = 4.0 3 1024), despite the fact that circulating
B cell numbers were not affected (compare Figs. 1E, 2B). Further
analysis of the B cell compartment revealed that this reduction
affected all tested B cell populations (proB/preB1, immature, and
recirculating B cells; Supplemental Fig. 2C). The fact that even
the recirculating B cell counts were reduced despite normal cir-
culating (Fig. 1D, 1E) and splenic (Supplemental Fig. 2D) B cell
numbers suggests that the reduced bone marrow B cell counts are
likely due to a disturbed bone marrow B cell niche (rather than an
intrinsic B cell defect) and that this bone marrow phenotype
is well compensated in the periphery. Finally, the analysis of
bone marrow macrophages and dendritic cells did not reveal any
difference between wild type and Mcl1DMyelo mice either
(Supplemental Fig. 2E).
We have also tested various splenic leukocyte populations. As

shown in Fig. 2C, splenic neutrophil numbers were strongly re-
duced in Mcl1DMyelo animals (93% reduction; p = 1.5 3 1026).
However, as shown in Fig. 2D, the number of splenic T or B cells
was not affected (p = 0.77 and 0.092, respectively). Further
analysis of splenic B cells (Supplemental Fig. 2D) also failed to
reveal a defect in any of the splenic B cell populations tested.
Additional studies on splenic macrophages and dendritic cells
failed to reveal any reduction in their numbers in Mcl1DMyelo mice
(Supplemental Fig. 2F). However, the number of splenic macro-
phages was significantly increased in Mcl1DMyelo animals
(Supplemental Fig. 2F), which correlated with the size of the
spleen in those mice (i.e., the difference disappeared after nor-
malization for the weight of the spleen). Therefore, we believe that
the increased macrophage number is related to splenomegaly in
those mice (see below), reflecting the fact that macrophages rep-
resent one of the predominant cell types in this organ.
The number of tissue neutrophils under inflammatory conditions

was assessed in thioglycolate-induced peritonitis. As shown in
Fig. 2E, thioglycolate injection triggered a robust neutrophil in-
filtration in wild type animals, whereas no such infiltration could
be observed in Mcl1DMyelo mice (97% reduction; p = 1.3 3 1024).
Therefore, the severe neutrophil deficiency in Mcl1DMyelo mice is
also evident under inflammatory conditions.
We have also tested the in vitro differentiation of macrophages

from Mcl1DMyelo bone marrow cells. We did not observe any
difference between the number of bone marrow–derived macro-
phages generated from wild type or Mcl1DMyelo bone marrow cells

The Journal of Immunology 3795
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(Supplemental Fig. 2G), and the morphology and F4/80 expres-
sion profile was also similar between those genotypes (data not
shown). In contrast, PCR analysis of genomic DNA confirmed
effective deletion of the Mcl1flox allele in bone marrow–derived
macrophage cultures, whereas only a marginal deletion (likely
because of the presence of tissue macrophages or osteoclasts) was
seen in tail biopsy samples (Supplemental Fig. 2H; see further
explanation in the figure legend). Those results indicate that Mcl1
deletion does not affect the proliferation, differentiation, or overall
morphology of macrophages.

Survival of Mcl1DMyelo mice

Although it is generally believed that severe neutropenia is incon-
sistent with life, this has never been tested in mice, in part because
of the limitations of currently existing neutropenic mouse models
(16–20). Therefore, we tested the survival of the Mcl1DMyelo mice
during a prolonged period of time.
Surprisingly, and in contrast to our previous assumptions, the

survival of Mcl1DMyelo mice under specific pathogen-free condi-
tions was not dramatically different from that of wild type animals

(Fig. 3A). Although there was a moderate reduction of the survival
of Mcl1DMyelo mice compared with wild type animals (84% versus
92% at 6 mo and 66% versus 78% at 12 mo of age, respectively)
and this was statistically highly significant (p , 0.00001) due to
the very large number of mice tested (.600 per genotype), this
difference was not at all dramatic, especially at the early age range
when most animal experiments are performed.
The effect of the Mcl1DMyelo mutation under more real-world

conditions was tested on a smaller cohort of mice in a conven-
tional animal facility (Fig. 3B). Importantly, the survival of
Mcl1DMyelo animals was again only slightly below that of the wild
type mice (88 and 93% at 6 mo of age, respectively; p = 0.032),
indicating that the survival of Mcl1DMyelo mice is not dramatically
affected even under conventional conditions.
We did not see any substantial difference between the general

appearance or behavior of wild type andMcl1DMyelo mice (data not
shown). Body weight measurements revealed a slight reduction in
Mcl1DMyelo mice (Fig. 3C, 3D; p = 0.22 and 2.0 3 1026 for males
and females, respectively). The only consistent difference found
during dissection was splenomegaly in Mcl1DMyelo animals, which

FIGURE 1. Myeloid-specific deletion of Mcl-1 leads to neutrophil deficiency in peripheral blood. (A) Flow cytometric analysis of peripheral blood

leukocytes in wild type (WT) and Mcl1DMyelo mice. Ly6G+ cells are indicated with red color. (B) Histogram of Ly6G staining of WT and Mcl1DMyelo

peripheral blood leukocytes. (C) Quantitative analysis of the number of mature neutrophils (CD11b+Ly6G+Siglec-F2 cells). Flow cytometric profiles

(D) and quantitative analysis (E) of other leukocyte populations (red, neutrophils; green, monocytes; blue, eosinophils; magenta, B cells; orange, T

cells). Flow cytometric histograms (F) and quantitative analysis (G) of monocyte subpopulations. Dot plots and histograms are representative of and

quantitative data show mean and SEM from 21 to 28 (A–E) or 13 to 14 (F and G) mice per group from seven (A–E) or five (F and G) independent

experiments.
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appeared to become more severe in older animals (data not
shown).

Mcl1DMyelo mice breed in homozygous form

We also tested the breeding behavior of Mcl1DMyelo animals in our
specific pathogen-free facility. As shown in Fig. 3E, new pups
were born from all mating strategies (even when both parents were
of Mcl1DMyelo genotype) although the overall productivity of the
breeding was reduced when Mcl1DMyelo females were used. Most
importantly, breeding Mcl1DMyelo in homozygous form still
yielded a comparable number of offspring as wild type breeding
pairs, and the moderate reduction was not substantially more se-
vere than what is usually observed during breeding of other ge-
netically manipulated mice. We were also able to breed a smaller
cohort of Mcl1DMyelo mice in homozygous form in our conven-
tional facility (data not shown). Analysis of the genotype of the
offspring was also very close to the expected Mendelian ratios in
all cases (Fig. 3F), indicating normal embryonic and early post-
natal survival of Mcl1DMyelo mice.
Taken together, our results indicate that the Mcl1DMyelo mice are

viable and fertile even in homozygous mutant form, both under
specific pathogen-free and conventional conditions. In addition to
the surprising finding of practically normal survival in the almost
complete absence of circulating neutrophils (Figs 1, 2), these results
also indicate that the Mcl1DMyelo mouse strain may be relatively
easy to maintain and, therefore, may be a technically very useful
model for the in vivo analysis of neutrophil function. This is par-
ticularly true given that no individual offspring genotyping is
needed upon homozygous breeding and that most mouse experi-
ments are performed on younger animals, in which the survival
effect of the Mcl1DMyelo mutation is marginal.

Defective autoantibody-mediated inflammation in
Mcl1DMyelo mice

The functional relevance of neutropenia in Mcl1DMyelo mice was
tested in two autoantibody-induced, supposedly neutrophil-dependent
in vivo inflammation models.

Mice were first subjected to K/B3N serum-transfer arthritis, an
autoantibody-induced in vivo arthritis model (36, 37) previously
suggested to be mediated by neutrophils (38, 39). As shown in
Fig. 4A, K/B3N serum injection triggered robust arthritis in wild
type mice, whereasMcl1DMyelo mutants appeared to be completely
protected. Kinetic analysis of clinical score (Fig. 4B; p = 4.2 3
1025) and ankle thickness (Fig. 4C; p = 0.0059) has confirmed
those findings. The protection of Mcl1DMyelo mice was not due
to deletion of LysM by the Lyz2Cre/Cre knock-in mutation because
K/B3N serum-transfer arthritis developed normally in Lyz2Cre/Cre

mice (Supplemental Fig. 3).
Neutrophils have been proposed to be critical for the develop-

ment of anti-CVII Ab–induced dermatitis, a mouse model of the
rare human-blistering skin disease epidermolysis bullosa acquisita
(33, 40, 41). Anti-CVII Abs triggered severe skin inflammation in
wild type mice, whereas no signs of the disease could be observed
in Mcl1DMyelo animals (Fig. 4D). Kinetic analysis revealed that
Mcl1DMyelo mice were completely protected from skin inflamma-
tion, both in terms of the affected body surface (Fig. 4E; p = 3.8 3
10211) and of a more elaborate clinical scoring system (Fig. 4F;
p = 3.9 3 10210).
Taken together, our results indicate that Mcl1DMyelo mice are

completely protected from two separate, neutrophil-mediated
autoantibody-induced inflammation models.

Increased susceptibility to bacterial and fungal infection

Although Mcl1DMyelo mice resisted the microbial burden of
their commensal flora (Fig. 3), we wanted to test their sus-
ceptibility to experimentally induced infections. Therefore,
we subjected our mice to systemic S. aureus or C. albicans
infection.
Neutrophils are the major players in the host defense against

infections by S. aureus, a Gram-positive pathogen able to cause
skin and respiratory tract infection, abscess formation, and
bacteremia/sepsis (42, 43). As shown in Fig. 5A, whereas wild
type animals survived i.p. infection with 2 3 107 S. aureus, more

FIGURE 2. Tissue leukocytes in Mcl1DMyelo mice. Tissue neutrophils and other leukocytes were analyzed in wild type (WT) and Mcl1DMyelo mice from

bone marrow, spleen, and peritoneal lavage samples by flow cytometry. Mature neutrophils were identified as CD11b+Ly6G+ cells. Bar graphs show the

absolute number of neutrophils (A and C) or other leukocytes (B and D) from the bone marrow (A and B) or the spleen (C and D). (E) Quantitative analysis of

peritoneal lavage neutrophils after thioglycolate-induced peritonitis or control treatment. Data show mean and SEM from five to six (A–D) or six to eight (E)

mice per group from three independent experiments.
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than 80% of Mcl1DMyelo mice succumbed to the same infectious
challenge (p = 1.0 3 1025). Analysis of the bacterial burden 12 h
after the infection with 1 3 107 bacteria revealed a more than
100-fold increase of bacterial colony counts in the spleen
(p = 0.0015), kidneys (p = 0.023), and liver (p = 9.0 3 1025) and

significant increases in the brain (p = 0.028) and in the blood

(p = 0.0038) but not in the peritoneum (p = 0.098) of Mcl1DMyelo

mice (Fig. 5B, 5C).
Neutrophils are among the critical immune cells protecting the

host from infection by C. albicans, a fungal pathogen able to cause

superficial or systemic infections and one of the most prevalent

causes of hospital-acquired infections (44). As shown in Fig. 5D,

i.v. infection with 105 C. albicans caused lethality in 27% of wild

type animals, whereas the same infection caused rapid lethality in

95% of Mcl1DMyelo mice (p , 0.00001). Analysis of the fungal

burden at 12 h revealed a more than 10-fold increase in fungal

counts in the liver (p = 1.0 3 1024) of Mcl1DMyelo mice, with

moderate increase also in the spleen (p = 0.0096) and in the

kidneys (p = 5.2 3 1027) but not in the brain (p = 0.97) of the

animals (Fig. 5E).

Taken together, Mcl1DMyelo mice are highly susceptible to in-
fectious challenge by bacterial or fungal pathogens, such as
S. aureus or C. albicans, likely because of defective neutrophil-
mediated elimination of the pathogens.

Analysis of Mcl1DMyelo bone marrow chimeras

It is often difficult to obtain larger homogeneous cohorts of mice for
in vivo experiments from small breeding colonies. When studying
neutrophil function, this problem may be overcome by transplanting
bone marrow cells to larger cohorts of recipient mice. To test that
possibility, we transplanted wild type orMcl1DMyelo bone marrow cells
into lethally irradiated wild type recipients carrying the CD45.1 allele.
As shown in Fig. 6D, circulating neutrophils from such chimeras
consisted practically exclusively of CD45.2-expressing cells
(i.e., donor cells carrying the CD45.2 allele from the C57BL/6 genetic
background), indicating successful replacement of the recipients’ he-
matopoietic compartment by donor-derived cells. As shown in
Fig. 6A, circulating neutrophil numbers of Mcl1DMyelo bone marrow
chimeras was strongly reduced compared with parallel-generated wild
type chimeras (98.3% reduction; p = 1.8 3 10214). Mcl1DMyelo bone

FIGURE 3. Survival and fertility of Mcl1DMyelo mice. (A and B) Survival of wild type (WT) and Mcl1DMyelo mice under specific pathogen-free (SPF)

(A) or conventional (B) conditions. (C and D) The body weight of WT and Mcl1DMyelo male (C) and female (D) mice. (E) Breeding behavior of WT and

Mcl1DMyelo mice. Breeding was considered productive when pups were born from a given mating. (F) Genotype distribution of offspring from different

breeding strategies. Survival curves show data of 611–977 (A) or 31–52 (B) mice per group, whereas body weight analysis shows mean and SD from 7 to

28 (C) or 9 to 26 (D) mice per group. Data from 193 breeding pairs and 1520 pups were used for the analysis of breeding behavior and offspring

genotype.
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marrow chimeras were also completely protected from K/B3N
serum-transfer arthritis, both in terms of clinical score (p = 2.1 3
1025; Fig. 6B) and ankle thickness changes (p = 2.2 3 1026;
Fig. 6C). Therefore, bone marrow transplantation can be used to
generate larger cohorts of mice with neutropenia caused by the
Mcl1DMyelo mutation.

Neutrophil-specific deletion of Mcl-1 leads to neutropenia with
severe survival defects

The above experiments were performed using Mcl1DMyelo mice in
which Mcl-1 was deleted from the entire myeloid compartment.
To test the effect of Mcl-1 deletion in a more neutrophil-specific
manner, we have crossed the Mcl1flox/flox mice to mice carrying
the MRP8-Cre transgene, which drives Cre expression specifically
in the neutrophil compartment (45).
Mcl1DPMN mice showed dramatic (99.1%, p = 9.8 3 10212)

reduction of circulating neutrophil counts (Fig. 7A, 7B) that was
even more severe than the reduction seen in Mcl1DMyelo animals
(98.1%; see Fig. 1). The Mcl1DPMN mutation did not affect cir-
culating monocyte (p = 0.60), eosinophil (p = 0.99), B cell
(p = 0.21), or T cell (p = 0.58) numbers (Fig. 7C, 7D) or the
distribution of monocytes into Ly6C+ (inflammatory) or Ly6C2

(patrolling) monocytes (p = 0.24 and 0.26, respectively; Fig. 7E,
7F). Therefore, similar to the Mcl1DMyelo mutation, the Mcl1DPMN

mutation also leads to severe and selective neutropenia.

Analysis of the survival of Mcl1DPMN mice (Fig. 7G) revealed a
steady and substantial loss of Mcl1DPMN animals, leading to 58% sur-
vival at 6 mo and only 30% survival at 12 mo of age (p , 0.000001).
Mcl1DPMN mice were also clearly distinguishable from their wild type
littermates and often showed a severe wasting phenotype (data not
shown).Mcl1DPMN mice also showed a very poor breeding productivity
(Fig. 7H). Taken together, our data suggest that the limited survival and
breeding capacity makes Mcl1DPMN mice rather difficult to maintain.
This is further complicated by the fact that such poor breeders need to
be maintained in heterozygous form; therefore, all offspring need to be
individually genotyped, and only a fraction of the pups (25% in the most
sensible MRP8-CreMcl1flox/+ 3 Mcl1flox/flox breeding strategy) are ex-
pected to be of the desired Mcl1DPMN genotype.
Bone marrow transplantation experiments revealed thatMcl1DPMN

bone marrow chimeras also showed a severe wasting phenotype and
succumbed to death 3–8 wk after transplantation (data not shown).
Although initial results indicated complete protection of Mcl1DPMN

mice from K/B3N serum-transfer arthritis, the limited availability
and fragile health status of those mice did not allow us to complete a
sufficient number of those experiments (data not shown). The same
issue also prevented us from performing more detailed analysis of
the tissue leukocyte populations in Mcl1DPMN mice. Nevertheless, it
is interesting to note that in contrast to Mcl1DMyelo mice the few
Mcl1DPMN animals we were able to dissect did not show an overt
splenomegaly phenotype (data not shown).

FIGURE 4. Autoantibody-induced arthritis and skin-blistering disease in Mcl1DMyelo mice. (A–C) Wild type (WT) orMcl1DMyelo mice were injected with

control (B3N) or arthritic (K/B3N) serum on day 0. Arthritis development was followed by photographing on day 7 (A), clinical scoring of the hind limbs

(B) and ankle thickness measurement (C). (D–F) Skin-blistering disease was triggered in wild type (WT) or Mcl1DMyelo mice by systemic injection of

control IgG or CVII-specific (anti-CVII) Abs. Skin disease was followed by photographing on day 14 (D) and clinical assessment of the total body surface

affected (E) and the overall disease severity (F). Images are representative of and quantitative data show mean and SEM from five to nine control and 9 to 15

arthritic serum–treated individual mice per group from three independent experiments (A–C), or from three to four control and three to four anti-CVII–

treated mice per genotype from two independent experiments (D–F).
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Taken together, our results indicate that although the Mcl1DPMN

mutation leads to severe and specific neutropenia, the poor and
fragile health status, limited survival and fertility, and non-
homozygous nature of those animals makes them hardly suitable
for larger-scale in vivo experiments.

Partial neutropenia in G-CSF receptor–deficient mice

We have also tested G-CSF receptor–deficient (Csf3r2/2) mice
(20) as a reference neutropenic mouse strain. Csf3r2/2 mice
showed only partial neutropenia (p = 1.1 3 1024; Supplemental
Fig. 4A, 4B), which was not nearly as severe and consistent as in
Mcl1DMyelo or Mcl1DPMN animals (Figs. 1, 7). Similar to the
Mcl1DMyelo and Mcl1DPMN mutations, the Csf3r2/2 mutation did
not affect other circulating leukocyte populations either
(Supplemental Fig. 4C, 4D). Although the survival of Csf3r2/2

mice was not substantially reduced, we also had difficulties
breeding Csf3r2/2 mice in homozygous form (data not shown).
Those results indicate severe limitations of the Csf3r2/2 mutation
as a neutropenia model.

Discussion
Our results indicate that Mcl1DMyelo mice lacking Mcl-1 in the
myeloid lineage are severely neutropenic but survive and breed in
homozygous form. Those mice may, therefore, be highly useful in
analyzing the role of neutrophils in in vivo processes in health and
disease. Our results also indicate that mice are able to survive
almost normally when the circulating neutrophil numbers are re-
duced to ,2% of their normal values, necessitating the re-
evaluation of the role of neutrophils in rodent survival.
Currently available tools for reducing neutrophil numbers have

substantial limitations. Although Ab-mediated depletion (e.g., by
the RB6-8C5 or NIMP-R14 anti-Gr1 or the 1A8 anti–Ly6G Abs)
has clear benefits, such as easy availability and suitability to be

used on transgenic strains without breeding delay, it suffers from

limited specificity (especially when using anti-Gr1 Abs), very high

reagent costs, and the temporary nature of the depletion. Prior

reports of neutropenic mice (16–21) also revealed phenotypes that

strongly limit their use as in vivo neutropenia models. Besides

severe neutropenia, Gfi1-deficient mice also show various defects

in the T and B cell compartment and have a median survival time

of ∼8–10 wk (16, 17), in line with the severe neutropenia

and lymphocyte defects caused by dominant negative GFI1 muta-

tions in human patients (46). The so-called “Genista” mice carrying

a chemically induced Gfi1 mutation show incomplete neutrophil

deficiency and are only partially protected in a neutrophil-dependent

in vivo inflammation model (18). Mice lacking G-CSF (19) or the
G-CSF receptor (20) are only moderately neutropenic (see also

Supplemental Fig. 4), and the latter strain also shows breeding de-

fects (data not shown). Deficiency of the Foxo3A transcription factor

causes accelerated neutrophil apoptosis at the site of inflammation

but does not affect circulating neutrophil numbers (21). In contrast to

those genetic and pharmacological models, the Mcl1DMyelo mice

show consistent, severe, and fairly specific neutropenia and survive

and breed in homozygous form, making them quite useful as an

in vivo neutropenia model.
The specificity of reduced neutrophil numbers in Mcl1DMyelo

mice is due to two factors: the deletion of the antiapoptotic Mcl-1

protein in the entire myeloid lineage (including macrophages) and

the specific requirement for Mcl-1 for the survival of neutrophils

but not of the cells of the monocyte/macrophage lineage (24, 47).

This is also indicated by the normal number and overall ap-

pearance of macrophages differentiated from Mcl1DMyelo bone

marrow cells, despite effective deletion of the Mcl1flox allele

(Supplemental Fig. 2G, 2H). We have also tested Mcl1DPMN mice

in which Mcl1 deletion is achieved by the MRP8-Cre transgene,

which is more specific for neutrophils than the Lyz2Cre knock-in

FIGURE 5. Mcl1DMyelo mice are highly susceptible to bacterial and fungal infections. (A–C) Survival curves (A) or analysis of the bacterial burden from

the indicated tissues (B and C) of wild type (WT) and Mcl1DMyelo mice following i.p. injection with 2 3 107 (A) or 107 (B and C) S. aureus bacteria. (D and E)

Survival curves (D) or analysis of the fungal burden from the indicated tissues (E) of WT and Mcl1DMyelo mice following i.v. injection with 105 C. albicans.

Survival curves show the data of 16 (A) or 19–22 (D) mice per group from three independent experiments. Bar graphs show mean and SEM from 9 to 10

(B and C) or 10 to 11 (E) mice per group from three (B and C) or four (E) independent experiments.
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mutant (45). Although the Mcl1DPMN mutations also strongly re-

duced circulating neutrophil counts and appeared to be specific

over several other leukocyte lineages (Fig. 7), the limited sur-

vival and poor breeding of those mice make them very difficult

to use as an in vivo neutropenia model. Although it is at present

unclear why the Mcl1DMyelo and Mcl1DPMN mice have different

survival and breeding characteristics, one of the possible ex-

planations is that the remaining ∼2% of neutrophils in

Mcl1DMyelo mice is sufficient to control the commensal flora,

whereas the ∼1% of remaining neutrophils in the Mcl1DPMN

mutants is below the threshold of neutrophil levels required for

normal survival. It would theoretically also be possible that the

survival of the Mcl1DMyelo mice is due to some genetic drift in

our mouse colony, although our heterozygous breeding strategy

argues against that possibility. Understanding the exact reason

for the different survival of Mcl1DMyelo and Mcl1DPMN mice

would require substantial additional experiments, including

detailed apoptosis and in vitro progenitor differentiation/

proliferation assays.
Although the Mcl1DMyelo mutation causes severe neutropenia

both in the peripheral blood and in various tissues (Figs. 1, 2), it is
at present not entirely clear at which stage the mutation interferes
with neutrophil development and/or survival. The fact that the
number of Ly6Gmed/dim cells in the bone marrow is not reduced
(Supplemental Fig. 2B) suggests that the Mcl1DMyelo mutation
affects cells in the latest stage of neutrophil development. This is
also supported by the fact that HoxB8-transduced myeloid pro-
genitors were unable to engraft the bone marrow of Mcl1DMyelo

mice (A.O. and A.M., unpublished observations), suggesting that
the myeloid progenitor niche is preoccupied by endogenous cells
in those animals.
Although theMcl1DMyelo mutation proved to be fairly specific for

neutrophils, we have consistently observed reduced B lineage cell

numbers in the bone marrow of Mcl1DMyelo mice (Fig. 2B). The
relevance of this finding is at present unclear, especially given

the normal circulating (Fig. 1E) and splenic (Fig. 2D) B cell

counts. More detailed analysis of the B cell compartment

(Supplemental Fig. 2C, 2D) has revealed that even recirculating

B cell numbers are reduced in the bone marrow of Mcl1DMyelo

animals, suggesting disturbance of the bone marrow B cell niche.

Alternatively, this observation may be due to the expression of

LysM in the early B cell lineage as indicated by the ImmGen

database (www.immgen.org). It should also be noted that more

splenic macrophages (Supplemental Fig. 2F) were observed in

Mcl1DMyelo mice, which likely reflects splenomegaly in those

animals.
To our knowledge, this is the first detailed characterization and

validation of the Mcl1DMyelo mice as a suitable experimental

neutropenia model. In particular, our study provides the most

detailed lineage analysis of those animals, reports large-scale as-

sessment of their survival and fertility, and validates the mutant

mice on known neutrophil-dependent in vivo inflammation and

infection models. To our knowledge, we also provide the first

detailed analysis of Mcl1DPMN mice and a side-by-side compari-

son of the Mcl1DMyelo, Mcl1DPMN, and Csf3r2/2 mutants. It

should, nevertheless, be noted that we have already used the

Mcl1DMyelo model in the recent past to test the role of neutrophils

in various disease models, such as graft-versus-host disease (48),

contact hypersensitivity (35), gout (49), and experimental lupus

(50). All those reports and further ongoing studies have confirmed

the usefulness of this model for the in vivo analysis of neutrophil

function.
Taken together, our results indicate that the unique combination

of severe and fairly specific neutropenia, mostly normal survival,

and capability for breeding in homozygous form make the

Mcl1DMyelo mutation highly suitable for the analysis of the role

FIGURE 6. Neutrophil deficiency and autoantibody-induced arthritis in Mcl1DMyelo bone marrow chimeras. (A) Number of circulating neutrophils

(CD11b+Ly6G+Siglec-F– cells) of wild type (WT) or Mcl1DMyelo bone marrow chimeras by flow cytometry. (B and C) Analysis of the clinical score (B) and

ankle thickness (C) of WT and Mcl1DMyelo bone marrow chimeras injected with control (B3N) or arthritic (K/B3N) serum on day 0. (D) Representative

flow cytometric analysis of donor marker (CD45.2) expression in circulating neutrophils (Ly6G+ gate) from intact (nonchimeric) mice of the

CD45.1-expressing recipient strain as well as from wild type (WT) or Mcl1DMyelo bone marrow chimeras. A representative histogram from a large number

of experiments is shown. Quantitative data show mean and SEM from 17 chimeras (A) or from eight control and nine arthritic serum–treated chimeras per

group from two (A) or three (B and C) independent experiments.
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of neutrophils in in vivo models of normal and pathological
processes in experimental mice. Our results also indicate that
rodents are able to survive and breed when their circulating neu-
trophil counts are dramatically reduced.
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quantitative analysis (F) of monocyte subpopulations. (G) Survival of WT and Mcl1DPMN mice under specific pathogen-free conditions. (H)

Breeding behavior of WT and Mcl1DPMN mice. Flow cytometry dot plots and histograms are representative of and quantitative data show mean and

SEM from, 10–22 (A–D) or 8–14 (E and F) mice per group from four (A–D) or three (E and F) independent experiments. Survival curves (G) show the

data of 138–469 mice per genotype. Eighty-six breeding pairs were used for the analysis of breeding behavior (H).
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C. Johnsson, C. Maueröder, M. J. Podolska, M. H. Biermann, et al. 2017. Ex-
perimental lupus is aggravated in mouse strains with impaired induction of
neutrophil extracellular traps. JCI Insight 2: e92920.

The Journal of Immunology 3803

 by guest on February 28, 2019
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/

