58 research outputs found

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Centrality dependence of inclusive J/ψ production in p-Pb collisions at s N N = 5.02 sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV

    Get PDF
    We present a measurement of inclusive J/psi production in p-Pb collisions at root S-NN = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, p(T), in the backward (-4.46 < y(cms) < -2.96) and forward (2.03 < y(cms) < 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1.37 < y(cms) < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The p(T)-differential J/psi production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p(T) and p(T)(2) values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p(T) for several centrality classes at backward and forward rapidity. At mid-and forward rapidity, the J/psi yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p(T) of the J/psi. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions

    清涼飮料税論

    Get PDF
    The production of J/\).psi\) and ψ(2S)\psi(2S) was measured with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity 2.5 < y < 4 \() down to zero transverse momentum \(p_{\rm T} in the dimuon decay channel. Inclusive J/\).psi\) yields were extracted in different centrality classes and the centrality dependence of the average pTp_{\rm T} is presented. The J/\).psi\) suppression, quantified with the nuclear modification factor RAAR_{\rm AA} , was studied as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/\).psi\) production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the ψ(2S)\psi(2S) suppression are provided via the ratio of ψ(2S)\psi(2S) over J/\).psi\) measured in pp and Pb-Pb collisions
    corecore