232 research outputs found
Judging the scientific quality of applied lighting research
Applied lighting research is inherently interdisciplinary. Any one study in which investigators seek to understand the effects of light may involve expertise drawn from fields as varied as psychology, physiology, photobiology, vision science, engineering, physics, horticulture, and architecture. Despite differences in the specifics of research methods, data management, data analysis, and presentation, the logic of scientific thinking is a common thread. This is the basis on which the peer review system operates. This article leads readers through the criteria used by journal reviewers and editors to determine the acceptability of papers for publication in a peer-reviewed journal. This is done by review of the 1941 paper by Kruithof in which he described the now-famous “Kruithof curve” relating preferred light source color temperatures and illuminances: How would one review the original Kruithof paper today, and what would we expect to be told about this work in order to judge the validity of the conclusions
CIE Software Check of luox.app
The University of Oxford has developed an open-access software platform known as luox, which incorporates elements of CIE publications for the calculation of certain quantities integrated from spectral data. Under the terms of a licence agreement between the University of Oxford and the CIE, the CIE has agreed to endorse the software following a black-box validation of the software. This is the report of that validation exercise, based on the work of an ad hoc task group of the CIE Board of Administration. The task group selected 43 spectrafrom various sources, 19 being spectra with 5 nm intervals and 24 being spectra with 1 nm intervals, and calculated luminance (illuminance), a-opic radiances (a-opic irradiances), a-opic equivalent daylight luminances (a-opic equivalent daylight illuminances), a-opic efficacies of luminous radiation, and chromaticity coordinates using both luox and a variety of other available reference calculation tools, both public and private. Tolerance intervals were established for each quantity, and the deviation between the test values from luox and thereference values were calculated for each spectrum. The results for all of these evaluations showed consistency between the test values and the reference values. Based on these results, the CIE approves the following statement concerning the luox software, as per the aforementioned licence agreement:“This software incorporates methods, formulae, spectral function calculations and spectra from the International Commission on Illumination (CIE). The CIE endorses this software having made a black-box evaluation of the software as of Feb. 11, 2021, finding that the software performs satisfactorily. This software is not a replacement for the CIE publications and works from which it is derived. The user is advised to consult the original publications and works for proper understanding of and calculation of the result of this software.
Environmental distribution of post-Palaeozoic crinoids from the Iberian and south-Pyrenean basins, NE Spain
Post-Palaeozoic crinoids from northeast Spain ranging from the Ladinian (Middle Triassic) to the Ilerdian (lower Ypresian, early Eocene) are documented. Here we provide the first attempt to reconstruct the environmental distribution of these crinoids based on relatively complete material (mostly cups). Triassic forms are dominated by encrinids from outer carbonate ramps. Late Jurassic crinoids are dominated by cyrtocrinids, comatulids, millericrinids, and isocrinids, occurring either on sponge mounds and meadows or on soft substrates within middle to outer carbonate ramps. Aptian (Early Cretaceous) forms include nearly complete isocrinids which are found in extremely shallow environments represented by bioclastic carbonates and interspersed oyster-rich layers. Other Aptian occurrences come from more distal and deep environments and are composed solely of comatulids. Albian forms are dominated by cyrtocrinids and isocrinids associated with coral reefs. Late Cretaceous and Eocene crinoids include mostly bourgueticrinids (Comatulida) that are found either in outer ramp facies or associated with mid-ramp reef complexes. The later corresponds to one of the shallowest occurrence of bourgueticrinids in the Cenozoic. The palaeoecological data for fossil crinoids of northeast Spain contributes to reconstructing the history of the bathymetric distribution of articulate crinoids, supporting the idea that stalked crinoids were able to inhabit a wide range of shallow marine environments in the late Mesozoic and early Cenozoic
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing
Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
- …