124 research outputs found

    Strain balanced quantum posts for intermediate band solar cells

    Get PDF
    In this work we present strain balanced InAs quantum post of exceptional length in the context of photovoltaics. We discuss the general properties of these nanostructures and their impact in the practical implementation of an intermediate band solar cell. We have studied the photocurrent generated by strain balanced quantum posts embedded in a GaAs single crystal, and compared our results with quantum dot based devices. The incorporation of phosphorous in the matrix to partially compensate the accumulated stress enables a significant increase of the quantum post maximum length. The relative importance of tunneling and thermal escape processes is found to depend strongly on the geometry of the nanostructures. tunneling and thermal escape processes is found to depend strongly on the geometry of the nanostructures

    Recent progress with hot carrier solar cells

    Get PDF
    Hot carrier solar cells offer one of the most promising options for high performance “third generation” photovoltaic devices. For successful operation, these need to be thin, strongly absorbing, radioactively efficient devices in a simple 2-terminal configuration. Nonetheless, they offer potential performance close to the maximum possible for solar conversion, equivalent to a multi-cell stack of six or more tandem cells possibly without some of the limitations, such as spectral sensitivity. However, hot carrier cells offer some quite fundamental challenges in implementation that our team is addressing in an internationally collaborative effort

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Programa nacional de mejora y conservación de los recursos genéticos de la encina y el alcornoque frente a la seca

    Get PDF
    Como respuesta a la gravedad de los procesos de decaimiento y mortalidad de la encina y el alcornoque, que amenazan la sostenibilidad de sus masas en la Península Ibérica, en el año 2019 se constituyó el subgrupo de trabajo “Mejora genética y fisiológica”, que forma parte del grupo de trabajo “Seca”, coordinado por el MITECO. Este subgrupo incluye a científicos y técnicos de varias administraciones y numerosos centros de investigación y Universidades y una empresa pública, expertos en mejora genética, fitopatología, ecología, propagación vegetativa, bioquímica y biología molecular. El programa tiene como objetivo la selección de genotipos de Quercus ilex y Q. suber tolerantes al estrés hídrico y a la podredumbre radical provocada por Phytophthora cinnamomi. A partir del estudio de 18 poblaciones y de 194 árboles “escape” seleccionados en focos de seca, se espera seleccionar un material apto para restaurar zonas afectadas por problemas de decaimiento. Se presenta una síntesis de las primeras actividades de caracterización e identificación de árboles escape en focos de seca, ensayos de invernadero para el estudio de la variabilidad poblacional en cuanto a vigor y tolerancia al estrés, recogida de muestras vegetales y edáficas para el análisis genético, molecular y de microbioma, identificación de marcadores moleculares asociados a resiliencia y micropropagación del material de mayor valor potencial
    corecore