21 research outputs found

    The Pharmacogenetics of Symptom Response to Antipsychotic Drugs

    Get PDF
    Antipsychotic drugs are limited in their efficacy by the relatively poor response of negative and cognitive symptoms of schizophrenia as well as by the substantial variability in response between patients. Pharmacogenetic studies have sought to identify the genetic factors that underlie the individual variability in response to treatment, with a past emphasis on dopamine and serotonin receptors as candidate genes. Few studies have separated effects on positive and negative symptoms, despite the established differences in response to drug treatment between these syndromes. Where this has been done most findings are consistent with the conclusion that dopamine receptor polymorphisms relate to positive symptom response, while negative symptom improvement is influenced by polymorphisms of genes involved in 5-HT neurotransmission. A wide range of polymorphisms in other candidate genes have been investigated, with some positive findings in those genes associated with glutamatergic transmission and/or risk factors for schizophrenia. However, there remains a lack of good replicated findings; furthermore there is little evidence to support drug-specific genetic associations with treatment response. While most past studies focused on single candidate genes, technology now permits genome-wide association studies with response to antipsychotics. Although not without major limitations, these "hypothesis-free" approaches are beginning to identify further important risk factors for treatment response. Again there is little consistency between various studies, although some of the polymorphisms identified are in genes involved in neurodevelopment, which is increasingly being recognized as important in the pathophysiology of schizophrenia

    Treating the “E” in “G × E”: Trauma-Informed Approaches and Psychological Therapy Interventions in Psychosis

    Get PDF
    Despite advances in genetic research, causal variants affecting risk for schizophrenia remain poorly characterized, and the top 108 loci identified through genome-wide association studies (GWAS) explain only 3.4% of variance in risk profiles. Such work is defining the highly complex nature of this condition, with omnigenic models of schizophrenia suggesting that gene regulatory networks are sufficiently interconnected such that altered expression of any “peripheral” gene in a relevant cell type has the capacity to indirectly modulate the expression of “core” schizophrenia-associated genes. This wealth of associated genes with small effect sizes makes identifying new druggable targets difficult, and current pharmacological treatments for schizophrenia can involve serious side effects. However, the fact that the majority of schizophrenia genome-wide associated variants fall within non-coding DNA is suggestive of their potential to modulate gene regulation. This would be consistent with risks that can be mediated in a “gene × environment” (G × E) manner. Stress and trauma can alter the regulation of key brain-related pathways over the lifetime of an individual, including modulation of brain development, and neurochemistry in the adult. Recent studies demonstrate a significant overlap between psychotic symptoms and trauma, ranging from prior trauma contributing to psychosis, as well as trauma in response to the experience of psychosis itself or in response to treatment. Given the known effects of trauma on both CNS gene expression and severity of psychosis symptoms, it may be that pharmacological treatment alone risks leaving individuals with a highly stressful and unresolved environmental component that continues to act in a “G × E” manner, with the likelihood that this would negatively impact recovery and relapse risk. This review aims to cover the recent advances elucidating the complex genetic architecture of schizophrenia, as well as the long-term effects of early life trauma on brain function and future mental health risk. Further, the evidence demonstrating the role of ongoing responses to trauma or heightened stress sensitivity, and their impact on the course of illness and recovery, is presented. Finally, the need for trauma-informed approaches and psychological therapy-based interventions is discussed, and a brief overview of the evidence to determine their utility is presented

    Quality of life in schizophrenia: development, reliability and internal consistency of the Lancashire Quality of Life Profile-European version.

    No full text
    BACKGROUND: This paper, part of the European Psychiatric Services: Inputs Linked to Outcome Domains and Needs (EPSILON) Study, reports the development, reliability and internal consistency of the Lancashire Quality of Life Profile--European Version (LQoLP-EU) in a representative sample of people with schizophrenia from five European sites. METHOD: The LQoLP-EU was administered to a total sample of 404 patients to check its internal consistency, and a sub-sample of 294 patients was interviewed a second time within 7-15 days to verify its test-retest reliability. RESULTS: Internal consistency of the total domains, perceived QoL scale (Life Satisfaction Scale, LSS) was good at 0.87. Of the nine subjective QoL domains Work and Leisure showed the lowest internal consistency (0.30 and 0.56 respectively), the values of the remaining sub-scales ranging between 0.62 and 0.88. The pooled ICC score for LSS was 0.82, and for the nine subjective QoL domain sub-scales it ranged from 0.61 (Safety) to 0.75 (Living Situation). There were significant differences between the sites in alpha and ICCs for sub-scales, but not for the LSS. CONCLUSION: The LQoLP-EU has good internal consistency and reliability in the five European centres

    Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first-episode psychosis

    No full text
    OBJECTIVE: Pharmacogenomic studies of antipsychotics have typically examined effects of individual polymorphisms. By contrast, polygenic risk scores (PRSs) derived from genome-wide association studies (GWAS) can quantify the influence of thousands of common alleles of small effect in a single measure. The authors examined whether PRSs for schizophrenia were predictive of antipsychotic efficacy in four independent cohorts of patients with first-episode psychosis (total N=510). METHOD: All study subjects received initial treatment with antipsychotic medication for first-episode psychosis, and all were genotyped on standard single-nucleotide polymorphism (SNP) arrays imputed to the 1000 Genomes Project reference panel. PRS was computed based on the results of the large-scale schizophrenia GWAS reported by the Psychiatric Genomics Consortium. Symptoms were measured by using total symptom rating scales at baseline and at week 12 or at the last follow-up visit before dropout. RESULTS: In the discovery cohort, higher PRS significantly predicted higher symptom scores at the 12-week follow-up (controlling for baseline symptoms, sex, age, and ethnicity). The PRS threshold set at a p value <0.01 gave the strongest result in the discovery cohort and was used to replicate the findings in the other three cohorts. Higher PRS significantly predicted greater posttreatment symptoms in the combined replication analysis and was individually significant in two of the three replication cohorts. Across the four cohorts, PRS was significantly predictive of adjusted 12-week symptom scores (pooled partial r=0.18; 3.24% of variance explained). Patients with low PRS were more likely to be treatment responders than patients with high PRS (odds ratio=1.91 in the two Caucasian samples). CONCLUSIONS: Patients with higher PRS for schizophrenia tended to have less improvement with antipsychotic drug treatment. PRS burden may have potential utility as a prognostic biomarker

    Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first-episode psychosis

    No full text
    OBJECTIVE: Pharmacogenomic studies of antipsychotics have typically examined effects of individual polymorphisms. By contrast, polygenic risk scores (PRSs) derived from genome-wide association studies (GWAS) can quantify the influence of thousands of common alleles of small effect in a single measure. The authors examined whether PRSs for schizophrenia were predictive of antipsychotic efficacy in four independent cohorts of patients with first-episode psychosis (total N=510). METHOD: All study subjects received initial treatment with antipsychotic medication for first-episode psychosis, and all were genotyped on standard single-nucleotide polymorphism (SNP) arrays imputed to the 1000 Genomes Project reference panel. PRS was computed based on the results of the large-scale schizophrenia GWAS reported by the Psychiatric Genomics Consortium. Symptoms were measured by using total symptom rating scales at baseline and at week 12 or at the last follow-up visit before dropout. RESULTS: In the discovery cohort, higher PRS significantly predicted higher symptom scores at the 12-week follow-up (controlling for baseline symptoms, sex, age, and ethnicity). The PRS threshold set at a p value <0.01 gave the strongest result in the discovery cohort and was used to replicate the findings in the other three cohorts. Higher PRS significantly predicted greater posttreatment symptoms in the combined replication analysis and was individually significant in two of the three replication cohorts. Across the four cohorts, PRS was significantly predictive of adjusted 12-week symptom scores (pooled partial r=0.18; 3.24% of variance explained). Patients with low PRS were more likely to be treatment responders than patients with high PRS (odds ratio=1.91 in the two Caucasian samples). CONCLUSIONS: Patients with higher PRS for schizophrenia tended to have less improvement with antipsychotic drug treatment. PRS burden may have potential utility as a prognostic biomarker

    Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first-episode psychosis

    No full text
    OBJECTIVE: Pharmacogenomic studies of antipsychotics have typically examined effects of individual polymorphisms. By contrast, polygenic risk scores (PRSs) derived from genome-wide association studies (GWAS) can quantify the influence of thousands of common alleles of small effect in a single measure. The authors examined whether PRSs for schizophrenia were predictive of antipsychotic efficacy in four independent cohorts of patients with first-episode psychosis (total N=510). METHOD: All study subjects received initial treatment with antipsychotic medication for first-episode psychosis, and all were genotyped on standard single-nucleotide polymorphism (SNP) arrays imputed to the 1000 Genomes Project reference panel. PRS was computed based on the results of the large-scale schizophrenia GWAS reported by the Psychiatric Genomics Consortium. Symptoms were measured by using total symptom rating scales at baseline and at week 12 or at the last follow-up visit before dropout. RESULTS: In the discovery cohort, higher PRS significantly predicted higher symptom scores at the 12-week follow-up (controlling for baseline symptoms, sex, age, and ethnicity). The PRS threshold set at a p value <0.01 gave the strongest result in the discovery cohort and was used to replicate the findings in the other three cohorts. Higher PRS significantly predicted greater posttreatment symptoms in the combined replication analysis and was individually significant in two of the three replication cohorts. Across the four cohorts, PRS was significantly predictive of adjusted 12-week symptom scores (pooled partial r=0.18; 3.24% of variance explained). Patients with low PRS were more likely to be treatment responders than patients with high PRS (odds ratio=1.91 in the two Caucasian samples). CONCLUSIONS: Patients with higher PRS for schizophrenia tended to have less improvement with antipsychotic drug treatment. PRS burden may have potential utility as a prognostic biomarker
    corecore