242 research outputs found

    Variations in concerns reported on the Patient Concerns Inventory (PCI) in head and neck cancer patients from different health settings across the world

    Get PDF
    Background: The aim was to collate and contrast patient concerns from a range of different head and neck cancer follow-up clinics around the world. Also, we sought to explore the relationship, if any, between responses to the patient concerns inventory (PCI) and overall quality of life (QOL). Methods: Nineteen units participated with intention of including 100 patients per site as close to a consecutive series as possible in order to minimize selection bias. Results: There were 2136 patients with a median total number of PCI items selected of 5 (2-10). “Fear of the cancer returning” (39%) and “dry mouth” (37%) were most common. Twenty-five percent (524) reported less than good QOL. Conclusion: There was considerable variation between units in the number of items selected and in overall QOL, even after allowing for case-mix variables. There was a strong progressive association between the number of PCI items and QOL

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Specific niche requirements underpin multidecadal range edge stability, but may introduce barriers for climate change adaptation

    Get PDF
    Aim: To investigate some of the environmental variables underpinning the past and present distribution of an ecosystem engineer near its poleward range edge. Location: >500 locations spanning >7,400 km around Ireland. Methods: We collated past and present distribution records on a known climate change indicator, the reef-forming worm Sabellaria alveolata (Linnaeus, 1767) in a biogeographic boundary region over 182 years (1836–2018). This included repeat sampling of 60 locations in the cooler 1950s and again in the warmer 2000s and 2010s. Using species distribution modelling, we identified some of the environmental drivers that likely underpin S. alveolata distribution towards the leading edge of its biogeographical range in Ireland. Results: Through plotting 981 records of presence and absence, we revealed a discontinuous distribution with discretely bounded sub-populations, and edges that coincide with the locations of tidal fronts. Repeat surveys of 60 locations across three time periods showed evidence of population increases, declines, local extirpation and recolonization events within the range, but no evidence of extensions beyond the previously identified distribution limits, despite decades of warming. At a regional scale, populations were relatively stable through time, but local populations in the cold Irish Sea appear highly dynamic and vulnerable to local extirpation risk. Contemporary distribution data (2013–2018) computed with modelled environmental data identified specific niche requirements which can explain the many distribution gaps, namely wave height, tidal amplitude, stratification index, then substrate type. Main conclusions: In the face of climate warming, such specific niche requirements can create environmental barriers that may prevent species from extending beyond their leading edges. These boundaries may limit a species’ capacity to redistribute in response to global environmental change

    Neutron emission from electromagnetic dissociation of Pb nuclei at √ s NN = 2.76 TeV measured with the ALICE ZDC

    Get PDF
    The ALICE Zero Degree Calorimeter system (ZDC) is composed of two identical sets of calorimeters, placed at opposite sides with respect to the interaction point, 114 meters away from it, complemented by two small forward electromagnetic calorimeters (ZEM). Each set of detectors consists of a neutron (ZN) and a proton (ZP) ZDC. They are placed at zero degrees with respect to the LHC axis and allow to detect particles emitted close to beam direction, in particular neutrons and protons emerging from hadronic heavy-ion collisions (spectator nucleons) and those emitted from electromagnetic processes. For neutrons emitted by these two processes, the ZN calorimeters have nearly 100% acceptance. During the √ sNN = 2.76 TeV Pb-Pb data-taking, the ALICE Collaboration studied forward neutron emission with a dedicated trigger, requiring a minimum energy deposition in at least one of the two ZN. By exploiting also the information of the two ZEM calorimeters it has been possible to separate the contributions of electromagnetic and hadronic processes and to study single neutron vs. multiple neutron emission. The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √ s NN = 2.76 TeV, with neutron emission, are σ single EMD = 187:4 ± 0.2 (stat.)-11.2 +13.2 (syst.) b and σmutual EMD = 5.7 ± 0.1 (stat.) ±0.4 (syst.) b, respectively [1]. This is the first measurement of electromagnetic dissociation of 208Pb nuclei at the LHC energies, allowing a test of electromagnetic dissociation theory in a new energy regime. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model'701st International Conference on New Frontiers in Physics, ICFP 20122012-06-10Kolymbari, Crete; Greecesem informaçã

    Performance of the ALICE experiment at the CERN LHC

    Get PDF
    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    European Position Paper on Rhinosinusitis and Nasal Polyps 2020

    Get PDF
    The European Position Paper on Rhinosinusitis and Nasal Polyps 2020 is the update of similar evidence based position papers published in 2005 and 2007 and 2012. The core objective of the EPOS2020 guideline is to provide revised, up-to-date and clear evidence-based recommendations and integrated care pathways in ARS and CRS. EPOS2020 provides an update on the literature published and studies undertaken in the eight years since the EPOS2012 position paper was published and addresses areas not extensively covered in EPOS2012 such as paediatric CRS and sinus surgery. EPOS2020 also involves new stakeholders, including pharmacists and patients, and addresses new target users who have become more involved in the management and treatment of rhinosinusitis since the publication of the last EPOS document, including pharmacists, nurses, specialised care givers and indeed patients themselves, who employ increasing self-management of their condition using over the counter treatments. The document provides suggestions for future research in this area and offers updated guidance for definitions and outcome measurements in research in different settings. EPOS2020 contains chapters on definitions and classification where we have defined a large number of terms and indicated preferred terms. A new classification of CRS into primary and secondary CRS and further division into localized and diffuse disease, based on anatomic distribution is proposed. There are extensive chapters on epidemiology and predisposing factors, inflammatory mechanisms, (differential) diagnosis of facial pain, allergic rhinitis, genetics, cystic fibrosis, aspirin exacerbated respiratory disease, immunodeficiencies, allergic fungal rhinosinusitis and the relationship between upper and lower airways. The chapters on paediatric acute and chronic rhinosinusitis are totally rewritten. All available evidence for the management of acute rhinosinusitis and chronic rhinosinusitis with or without nasal polyps in adults and children is systematically reviewed and integrated care pathways based on the evidence are proposed. Despite considerable increases in the amount of quality publications in recent years, a large number of practical clinical questions remain. It was agreed that the best way to address these was to conduct a Delphi exercise. The results have been integrated into the respective sections. Last but not least, advice for patients and pharmacists and a new list of research needs are included.Peer reviewe
    corecore