9 research outputs found
Patriarchal Domination and Quest for Identity in Sunlight on a Broken Column
Feminist perspectives have acquired a significant place across the country and world, beyond a number of established boundaries irrespective of caste, religion and creed. Attia Hosain’s novel Sunlight on a Broken Column converses about a Muslim girl Laila, the main protagonist and also the alter-ego of Attia Hosain, who headed for all the restrictions and exploitation. She sets an example for the women, who belong to the Muslim conservative family. She sharply protests against dishonor of human dignity, prejudices and exploitation. She obeys all the code of conduct meant for girls but at the same time, she was affected by the new wave of the college. Attia deserves applause for the portrayal of this new woman in the novel. The present paper is an endeavor of the study of deconstruction of patriarchal system and how that girl, Laila comes out of this complex society. The novel is an autobiographical story of the novelist herself. And not only she challenges the society, but also breaks all the shackles of the male hegemony. She has come out of the cocoon of domination of patriarchy in the present study of the novel
Iso-conversional study of crystallization activation energy of amorphous-crystallization transformation for Se79Te20Pb1 glass using non-isothermal differential scanning calorimetry technique
135-140The ternary Se79Te20Pb1 chalcogenide glass is prepared using melt quenching technique. Differential scanning calorimetry technique (DSC) is used to investigate the kinetics of crystallization of amorphous-crystallization (a-c) phase transformation under non-isothermal conditions at three different heating rates; 5, 10 and 15° C min-1. The variation of crystallized activation energy (Ec) with crystallized fraction (ϰ) and hence, with temperature (T) is investigated using five iso-conversional methods namely KAS, OFW, Friedman, Tang and Chen and Starink. It is found that Ec is not constant but vary with ϰ as well as T. Thus, the iso-conversional analysis of investigated glass indicates that the assumption of constant Ec is not appropriate
Iso-conversional study of crystallization activation energy of amorphous-crystallization transformation for Se79Te20Pb1 glass using non-isothermal differential scanning calorimetry technique
The ternary Se79Te20Pb1 chalcogenide glass is prepared using melt quenching technique. Differential scanning calorimetry technique (DSC) is used to investigate the kinetics of crystallization of amorphous-crystallization (a-c) phase transformation under non-isothermal conditions at three different heating rates; 5, 10 and 15° C min-1. The variation of crystallized activation energy (Ec) with crystallized fraction (ϰ) and hence, with temperature (T) is investigated using five iso-conversional methods namely KAS, OFW, Friedman, Tang and Chen and Starink. It is found that Ec is not constant but vary with ϰ as well as T. Thus, the iso-conversional analysis of investigated glass indicates that the assumption of constant Ec is not appropriat
Management of diabetes: Current treatments and their alternatives
Diabetes is the ninth largest cause of death globally and one of the most common lifestyle diseasesIt is the outcome of an intricate interaction between inherited and environmental factors. Obesity, urbanization, and genetic mutations are examples of internal and external variables that may raise the chance of getting diabetes. This paper seeks to review the various treatment, mechanism of action, and various formulations and doses available on the market to treat diabetes in the current era. It will also concentrate on the most promising novel therapeutic approaches now being examined in clinical trials, as well as the financial implications of such therapies in future markets. The high cost and severe adverse effects of allopathy treatment, most people continue to rely on it owing to a lack of knowledge about herbal medication, such as which herbs or species are used to treat diabetes and at what dose. Most of these drugs are particularly targeted on DPP4, AM2A, PPARA, GLP-1, SGLT2, and PTPN9. The study shows that flavonoids and terpenoids are the main constituents and show potential anti-diabetic effects in the herbal drug
DNA Aptamer Targets Mycobacterium tuberculosis DevR/DosR Response Regulator Function by Inhibiting Its Dimerization and DNA Binding Activity
Tuberculosis is recognized as one of the major public health threats worldwide. The DevR-DevS (DosR/DosS) two-component system is considered a novel drug target in Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, owing to its central role in bacterial adaptation and long-term persistence. An increase in DevR levels and the decreased permeability of the mycobacterial cell wall during hypoxia-associated dormancy pose formidable challenges to the development of anti-DevR compounds. Using an in vitro evolution approach of Systematic Evolution of Ligands by EXponential enrichment (SELEX), we developed a panel of single-stranded DNA aptamers that interacted with Mtb DevR protein in solid-phase binding assays. The best-performing aptamer, APT-6, forms a G-quadruplex structure and inhibits DevR-dependent transcription in Mycobacterium smegmatis. Mechanistic studies indicate that APT-6 functions by inhibiting the dimerization and DNA binding activity of DevR protein. In silico studies reveal that APT-6 interacts majorly with C-terminal domain residues that participate in DNA binding and formation of active dimer species of DevR. To the best of our knowledge, this is the first report of a DNA aptamer that inhibits the function of a cytosolic bacterial response regulator. By inhibiting the dimerization of DevR, APT-6 targets an essential step in the DevR activation mechanism, and therefore, it has the potential to universally block the expression of DevR-regulated genes for intercepting dormancy pathways in mycobacteria. These findings also pave the way for exploring aptamer-based approaches to design and develop potent inhibitors against intracellular proteins of various bacterial pathogens of global concern
Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs
Bacterial dormancy is a major impediment to the eradication of tuberculosis (TB), because currently used drugs primarily target actively replicating bacteria. Therefore, decoding of the critical survival pathways in dormant tubercle bacilli is a research priority to formulate new approaches for killing these bacteria. Employing a network-based gene expression analysis approach, we demonstrate that redox active vitamin C (vit C) triggers a multifaceted and robust adaptation response in Mycobacterium tuberculosis (Mtb) involving similar to 67% of the genome. Vit C-adapted bacteria display well-described features of dormancy, including growth stasis and progression to a viable but non-culturable (VBNC) state, loss of acid-fastness and reduction in length, dissipation of reductive stress through triglyceride (TAG) accumulation, protective response to oxidative stress, and tolerance to first line TB drugs. VBNC bacteria are reactivatable upon removal of vit C and they recover drug susceptibility properties. Vit C synergizes with pyrazinamide, a unique TB drug with sterilizing activity, to kill dormant and replicating bacteria, negating any tolerance to rifampicin and isoniazid in combination treatment in both in-vitro and intracellular infection models. Finally, the vit C multi-stress redox models described here also offer a unique opportunity for concurrent screening of compounds/combinations active against heterogeneous subpopulations of Mtb. These findings suggest a novel strategy of vit C adjunctive therapy by modulating bacterial physiology for enhanced efficacy of combination chemotherapy with existing drugs, and also possible synergies to guide new therapeutic combinations towards accelerating TB treatment
New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models
Abstract Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias’ characteristics and significance help in development of new antiarrhythmic drugs
Advances in nanoplasmonic biosensors for clinical applications
Biomarkers are unquestionable biological indicators for diagnosis and therapeutic interventions providing appropriate classification of a wide range of health disorders and risk factors. Nonetheless, the detection and quantification of biomarkers need to be tested with sufficient reliability by robust analytical methods in order to assure clinical performance in health care settings. Since the analytical performance is determined by the sensitivity and specificity of the method employed, techniques have been intensively refined in order to avoid the misinterpretation of results and undesirable bias. Although biomarkers can be detected with the existing analytical techniques, to reproducibly quantify them in decentralized settings or remote locations with the required accuracy is still a challenge. Currently, only a few point-of-care devices for biomarker evaluation are commercially available. Thus, more focused research efforts are needed to overcome these limitations in order to provide universal patient-centered care platforms. To this end, plasmonic biosensors can be conveniently used as portable diagnostic devices for attaining timely and cost-effective clinical outcomes. The development of enhanced performance based on nanoplasmonics technology opens the way for sensor miniaturization, multiplexing and point of care testing. This review covers recent advances and applications of plasmonic and nanoplasmonic biosensors intended for biomarker diagnosis in clinical practice, including cancer, cardiovascular and neurodegenerative diseases. The review specially focuses on: (i) recent progress in plasmonics development including the design of singular nanostructured surfaces, (ii) novel chemical functionalization strategies for the appropriate incorporation of bioreceptors and (iii) plasmonic applications as real operative devices in the clinical field. Future prospects in the use of nanoplasmonic sensor platforms for personalised quantification and management of biomarkers directly in body fluids will also be discussed