183 research outputs found

    On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements

    Get PDF
    The successful application of impedance spectroscopy in daily practice requires accurate measurements for modeling complex physiological or electrochemical phenomena in a single frequency or several frequencies at different (or simultaneous) time instants. Nowadays, two approaches are possible for frequency domain impedance spectroscopy measurements: (1) using the classical technique of frequency sweep and (2) using (non-)periodic broadband signals, i.e. multisine excitations. Both techniques share the common problem of how to design the experimental conditions, e.g. the excitation power spectrum, in order to achieve accuracy of maximum impedance model parameters from the impedance data modeling process. The original contribution of this paper is the calculation and design of the D-optimal multisine excitation power spectrum for measuring impedance systems modeled as 2R-1C equivalent electrical circuits. The extension of the results presented for more complex impedance models is also discussed. The influence of the multisine power spectrum on the accuracy of the impedance model parameters is analyzed based on the Fisher information matrix. Furthermore, the optimal measuring frequency range is given based on the properties of the covariance matrix. Finally, simulations and experimental results are provided to validate the theoretical aspects presented.Peer ReviewedPostprint (published version

    On the Transition From Non-BLEVE to BLEVE Failure for a 1.8 M 3 Propane Tank

    Get PDF
    A series of fire tests were conducted on nine, 1.8 m 3 Í‘500 US galÍ’ ASME code propane pressure vessels to study th

    Molecular impact of launch related dynamic vibrations and static hypergravity in planarians

    Get PDF
    Although many examples of simulated and real microgravity demonstrating their profound effect on biological systems are described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative process in a “whole animal” context. Therefore, planarians were subjected to 8.5 minutes of 4 g hypergravity (i.e. a human-rated launch level) in the Large Diameter Centrifuge (LDC) and/or to vibrations (20–2000 Hz, 11.3 Grms) simulating the conditions of a standard rocket launch. The transcriptional levels of genes (erg-1, runt-1, fos, jnk, and yki) related with the early stress response were quantified through qPCR. The results show that early response genes are severely deregulated after static and dynamic loads but more so after a combined exposure of dynamic (vibration) and static (hypergravity) loads, more closely simulating real launch exposure profiles. Importantly, at least four days after the exposure, the transcriptional levels of those genes are still deregulated. Our results highlight the deep impact that short exposures to hypergravity and vibration have in organisms, and thus the implications that space flight launch could have. These phenomena should be taken into account when planning for well-controlled microgravity studies

    Mathematical equivalence of non-local transport models and broadened deposition profiles

    Get PDF
    Old and recent experiments show that there is a direct response to the heating power of transport observed in modulated electron cyclotron heating (ECH) experiments both in tokamaks and stellarators, which is commonly known as non-local transport. This is most apparent for modulated experiments in stellarators such as LHD and W7-AS. We show that this power dependence and its corresponding experimental observations such as the so-called hysteresis in flux [Inagaki, NF, 113006, 2013] can be reproduced by broadened ECH deposition profiles. In other words, many mathematical models proposed to describe non-local transport are equivalent to an deposition (effective) profile in its linearized forms [vanBerkel, NF, 106042, 2018]. This also connects with new insights on microwave scattering due to density fluctuations in the edge plasma which shows that in reality the deposition profiles are much broader than expected [Chellai, PRL, 105001, 2018] but it is unclear if this effect is sufficient to explain non-local transport. These relationships can be further studied by separating the transport in a slow (diffusive) and a fast (heating/non-local) time-scale using perturbative experiments

    LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer

    Get PDF
    We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods

    Osteoid osteoma

    Get PDF
    Background: A 12-year-old boy presented with complaints of intermittent left hip pain for over one and a half year. The pain was worse at night and was relieved by taking non-steroidal anti-inflammatory drugs (NSAIDs), such as Aspegic. There was no history of previous trauma. Being a refugee, the patient was lost to follow-up. However, we managed to contact him and arranged a surgical treatment

    Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments

    Get PDF
    This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients. These transients can be the result from unforced response due to the initial condition and other drifts which are a source of error when performing and interpreting Fourier analysis on measurement data. Fourier analysis is particularly relevant in system identification used to build feedback controllers and the analysis of various pulsed experiments such as heat pulse propagation studies. The basic idea behind the methodology is that transients are continuous complex-valued smooth functions in the Fourier domain which can be estimated from the Fourier data. Then, these smooth functions can be approximately subtracted from the data such that only periodic components are retained. The merit of the approach is shown in two experimental examples, i.e., heat pulse propagation (core transport analysis) and radiation front movement due to gas puffing. The examples show that the quality of the data is significantly improved such that it allows new interpretation of the results even for non-ideal measurements.</p

    Cohort profile: the Utrecht Cardiovascular Cohort-Second Manifestations of Arterial Disease (UCC-SMART) Study-an ongoing prospective cohort study of patients at high cardiovascular risk in the Netherlands

    Get PDF
    PURPOSE: The Utrecht Cardiovascular Cohort-Second Manifestations of Arterial Disease (UCC-SMART) Study is an ongoing prospective single-centre cohort study with the aim to assess important determinants and the prognosis of cardiovascular disease progression. This article provides an update of the rationale, design, included patients, measurements and findings from the start in 1996 to date. PARTICIPANTS: The UCC-SMART Study includes patients aged 18-90 years referred to the University Medical Center Utrecht, the Netherlands, for management of cardiovascular disease (CVD) or severe cardiovascular risk factors. Since September 1996, a total of 14 830 patients have been included. Upon inclusion, patients undergo a standardised screening programme, including questionnaires, vital signs, laboratory measurements, an ECG, vascular ultrasound of carotid arteries and aorta, ankle-brachial index and ultrasound measurements of adipose tissue, kidney size and intima-media thickness. Outcomes of interest are collected through annual questionnaires and adjudicated by an endpoint committee. FINDINGS TO DATE: By May 2022, the included patients contributed to a total follow-up time of over 134 000 person-years. During follow-up, 2259 patients suffered a vascular endpoint (including non-fatal myocardial infarction, non-fatal stroke and vascular death) and 2794 all-cause deaths, 943 incident cases of diabetes and 2139 incident cases of cancer were observed up until January 2020. The UCC-SMART cohort contributed to over 350 articles published in peer-reviewed journals, including prediction models recommended by the 2021 European Society of Cardiology CVD prevention guidelines. FUTURE PLANS: The UCC-SMART Study guarantees an infrastructure for research in patients at high cardiovascular risk. The cohort will continue to include about 600 patients yearly and follow-up will be ongoing to ensure an up-to-date cohort in accordance with current healthcare and scientific knowledge. In the near future, UCC-SMART will be enriched by echocardiography, and a food frequency questionnaire at baseline enabling the assessment of associations between nutrition and CVD and diabetes
    • …
    corecore