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1 Introduction
Old and recent experiments show that there is a direct response to the heating power of transport observed
in modulated ECH experiments both in tokamaks and stellarators [1, 2, 3]. This is most apparent for modu-
lated experiments in the Large Helical Device (LHD) and in Wendelstein 7 advanced stellarator (W7-AS) (and
suggested in W7-X [4]) and is called ”hysteresis in flux”. In this work we show that

1. Observations of hysteresis in flux (direct response to power) can be perfectly reproduced by a broadened
deposition profile;

2. Non-local models can also explain the experimentally observed hysteresis in flux;

3. Power dependence/hysteresis in flux can be reproduced by linear models, i.e., no relationship to classic
definitions of hysteresis (persistant memory) [5].

2 Perturbative experiment
The fundamental idea of perturbative experiments (see Fig. 1) is to have a sufficiently small (heating) pertur-
bation such that the resulting (temperature) response can be considered linear [6]. This has been tested for the
experiments where ”hysteresis in flux” is observed and is generally the case if the experiment is well designed
[6, 7, 8].
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Fig. 1: Time evolution of electron heating and resulting electron temperature evolution at one radial location for one period (aver-
aged) in the Large Helical Device (reproduced from [9])

3 Effect of broadened deposition profile on temperature evolution
The effect on the electron temperature of various deposition profiles is shown in Fig. 2.
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Fig. 2: (left) Narrow and broad deposition profile (with missing power) used to simulate heat transport using (1); (middle) temper-
ature evolution: narrow deposition profile; and (right) temperature evolution: broad deposition profile

Note the similarity of the simulated temperature evolution shown in Fig. 2 (right) for a broadened deposition
profile to that shown in Fig. 1 (right).

4 Hysteresis in flux
The measurements in Fig. 1 are used to calculate the heat flux, resulting in the ”hysteresis in flux” figures
[2, 10] and is claimed as proof of non-local transport:
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Fig. 3: (left) perturbative heat flux based on temperature only (p (ρ, t) = 0) in (2); and (right) perturbative heat flux
including the heat source in (2). Reproduced from [9] same experiment as shown in Fig. 1.

In the case qe = −neχe∂Te/∂ρ and if the deposition profile is perfectly known (no non-local transport), then
we would expect the path to go up and down a straight line, i.e., the red and blue lines would coincide.

5 Error in deposition profile
To understand why an error in the deposition profile can (also) reproduce hysteresis in flux measurements, we
analyze its calculation based on the heat equation [2]:

∂

∂t
(neTe (ρ, t)) = −∇ρqe (ρ, t) + p (ρ, t) (1)

with the electron temperature Te, density ne, heat flux qe, heat source term p (ρ, t) all as function of the
dimensionless radius ρ. Hence, the heat flux can be calculated in cylindrical coordinates by [2, 8]
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We can reproduce Fig. 3 based on (linear) simulations of (2) by introducing an error on the deposition profile.
Then (1) is simulated with a broader deposition profile and qe is calculated using (2). For p(ρ, t) a narrow
deposition profile is used. This combination results in Fig. 4. and Fig. 5 for the source qP .
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Fig. 4: (left) Simulated perturbative heat flux based on temperature only (p (ρ, t) = 0); and (right) perturbative heat flux including
the heat source.

The difference between q∂T/∂t and qP in (2) determines if, and how large, the gap is in q̃e/ne (Fig. 4 and
Fig. 3). Thereby showing that errors in the estimation deposition profiles can lead to apparent ”hystere-
sis in flux”. Note, that one can also prove that the linearization of classic non-local models [8, 10], e.g.,
qe = −neχe (P )∇ρTe, can be rewritten as an apparent deposition profile [3]. Recent work also shows that
when analyzing the EC heating deposition profile can be significantly broadened due to scattering of the EC-
beam due to density fluctuations in the edge region [11, 12, 13, 14].

6 Discerning apparent deposition profiles from diffusion coefficients
The diffusion coefficients and the apparent deposition profile can be simultaneously determined ( Fig. 7) [3, 9].
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On the other hand, it is (mathematically) impossible to distinguish non-local transport from errors in the de-
position profile estimate when analyzing linear perturbative experiments only. Hence, the next step is the
analysis of diffusion coefficients and apparent deposition profiles over different equilibria.

7 Conclusion
Observed ”hysteresis in flux” behavior is reproducible by linear models and can be fully explained by both
old/new non-local models and/or errors in deposition profiles. Both models are mathematically equivalent.




